Skip to main content

Aspects of the Central and Decentral Production Parameter Space, Its Meta-Order and Industrial Application Simulation Example

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 652))

Included in the following conference series:

Abstract

In this paper, after giving an overview of this research field, we investigate the central-decentral parameter room using a theoretical approach, including a cybernetic meta-order concerning system theoretic concepts. For this, we introduce an axiom system with four axioms describing production systems in general. The modeling axiom and three axioms for system states: The attractor, bottleneck, and diversity theorem, all describing complex ordered systems. We then make a numerical investigation of central and decentral production in conjunction with a practical industrial application example and compare it to previous simulation results. As a result, we recommend simulating production concerning these two possibilities, central and decentral in the production control parameter-space and accompanying additional production parameters, from the customer and the product quantity to produce case-specific optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.anylogic.de/.

References

  1. Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-04682-8

    Book  Google Scholar 

  2. Burkhard, H.: Industrial production manufacturing processes, measuring and testing technology, original in German: Industrielle Fertigung Fertigungsverfahren, Mess- und Prüftechnik. Haan-Gruiten: Verlag Europa-Lehrmittel, 6 edn. (2013)

    Google Scholar 

  3. Cavallo, C.: Die casting vs. sand casting - what’s the difference? Thomas-Company

    Google Scholar 

  4. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. The McGraw-Hill Companies (2008)

    Google Scholar 

  5. DCM. The time control of die casting process. Junying Metal Manufacturing Co., Limited

    Google Scholar 

  6. Fadhlillah, M.M.: Pull system vs push system

    Google Scholar 

  7. GE-Additive

    Google Scholar 

  8. Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2113-3

    Book  Google Scholar 

  9. Heiden, B., Alieksieiev, V., Tonino-Heiden, B.: Selforganisational high efficient stable chaos patterns. In: Proceedings of the 6th International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS, pp. 245–252. INSTICC, SciTePress (2021)

    Google Scholar 

  10. Heiden, B., Knabe, T., Alieksieiev, V., Tonino-Heiden, B.: Production orgitonization - some principles of the central/decentral dichotomy and a witness application example. In: Arai, K. (ed.) FICC 2022. vol. 439, pp. 517–529. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98015-3_36

  11. Heiden, B., Tonino-Heiden, B.: Lockstepping conditions of growth processes: Some considerations towards their quantitative and qualitative nature from investigations of the logistic curve, pp. 695–705 (2022)

    Google Scholar 

  12. Heiden, B., Tonino-Heiden, B.: Philosophical Studies - Special Orgiton Theory/Philosophische Untersuchungen - Spezielle Orgitontheorie (English and German Edition) (unpublished) (2022)

    Google Scholar 

  13. Heiden, B., Volk, M., Alieksieiev, V., Tonino-Heiden, B.: Framing artificial intelligence (AI) additive manufacturing (AM). Procedia Comput.Sci. 186, 387–394 (2021)

    Article  Google Scholar 

  14. Hilborn, R.C.: Chaos and Nonlinear Dynamics - An Introduction for Scientists and Engineers. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  15. Huang, J., et al.: A hybrid electric vehicle motor cooling system–design, model, and control. EEE Trans. Veh. Technol. 68(5), 4467–4478 (2019)

    Article  Google Scholar 

  16. Kampker, A.: Elektromobilproduktion. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-42022-1

    Book  Google Scholar 

  17. Knabe, T.: Centralized vs. decentralized control of production systems (original in German: Zentrale vs. dezentrale steuerungvon produktionssystemen) (2021)

    Google Scholar 

  18. Krimm, R.: Comparison of central and decentral production control systems and simulation of an industrial use case (2022)

    Google Scholar 

  19. Lanner. Technology witness horizon (2021)

    Google Scholar 

  20. Luhmann, N.: Einführung in die Systemtheorie, 3 edn.. Carl-Auer-Systeme-Verlag (2006)

    Google Scholar 

  21. Markowitz, H.M.: Portfolio selection*. J. Financ. 7(1), 77–91 (1952)

    Google Scholar 

  22. Pan, Y., et al.: Taxonomies for reasoning about cyber-physical attacks in IoT-based manufacturing systems 4(3):45–54 (2017)

    Google Scholar 

  23. Quitter, D.: Additive fertigung: Geeignete bauteile für die additive fertigung identifizieren

    Google Scholar 

  24. Quitter, D: Metall-3d-druck: Spiralförmiger kühlkanal gibt e-motorengehäuse zusätzliche funktion

    Google Scholar 

  25. Ruttkamp, E.: Philosophy of science: interfaces between logic and knowledge representation. South Afr. J. Philos. 25(4), 275–289 (2006)

    Article  Google Scholar 

  26. Tonino-Heiden, B., Heiden, B., Alieksieiev, V.: artificial life: investigations about a universal osmotic paradigm (UOP). In: Arai, K. (ed.) Intelligent Computing. LNNS, vol. 285, pp. 595–605. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80129-8_42

    Chapter  Google Scholar 

  27. Trentesaux, D.: Distributed control of production systems. Eng. Appl. Artif. Intell. 22(7), 971–978 (2009)

    Article  Google Scholar 

  28. von Bertalanffy, L.: General System Theory. George Braziller, revised edition edition (2009)

    Google Scholar 

  29. von Foerster, H.: Cybernetics of epistemology. In: Understanding Understanding, pp. 229–246. Springer, New York (2003). https://doi.org/10.1007/0-387-21722-3_9

  30. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Heiden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heiden, B., Krimm, R., Tonino-Heiden, B., Alieksieiev, V. (2023). Aspects of the Central and Decentral Production Parameter Space, Its Meta-Order and Industrial Application Simulation Example. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_21

Download citation

Publish with us

Policies and ethics