Skip to main content

Multiplex Immunoassay Approaches Using Luminex® xMAP® Technology for the Study of COVID-19 Disease

  • Chapter
  • First Online:
Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1412))

Abstract

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has been one of the most severe outbreaks of respiratory illness in history. The clinical symptoms of COVID-19 may be similar to flu, although they can be life-threatening, particularly in the elderly and immunocompromised population. Together with nucleic acid detection, serological testing has been essential for the diagnosis of SARS-CoV-2 infection but has been critically important for studying the epidemiology, serosurveillance, and for vaccine research and development. Multiplexed immunoassay technologies have a particular advantage as they can simultaneously measure multiple analytes from a single sample. xMAP technology is a multiplex analysis platform that can measure up to 500 analytes at the same time from the same sample. It has been shown to be an important tool for studying immune response to the various SARS-CoV-2 antigens, as well as for measuring host protein biomarker levels as prognostic indicators of COVID-19. In this chapter, we describe several key studies where xMAP technology was used for multiplexed analysis of SARS-COV-2 antibody responses and host protein expression in COVID-19 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das S (2020) xMAP® Application Note: xMAP technology: A benchmark for serological testing https://www.selectscience.net/application-articles/xmap-technology-a-benchmark-for-serological-testing/?artID=52333

  2. Winter AK, Hegde ST (2020) The important role of serology for COVID-19 control. Lancet Infect Dis 20(7):758–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunbar SA Hoffmeyer (MR) Microsphere-based multiplex immunoassays: development and applications using Luminex® xMAP® technology. The Immunoassay Handbook: Theory and applications of ligand binding, ELISA and related techniques; Wild D (ed); Elsevier Science; Amsterdam, Netherlands. pp. 157–174. ISBN-13: 978-0080970370

    Google Scholar 

  4. Weiss S, Klingler J, Hioe C, et al (2020) A High Through-put Assay for Circulating Antibodies Directed against the S Protein of Severe Acute Respiratory Syndrome Corona virus 2. medRxiv. 2020.04.14.20059501. https://doi.org/10.1101/2020.04.14.20059501

  5. Cameron A, Porterfield CA, Byron LD, et al (2021) A multiplex microsphere IgG assay for SARS-CoV-2 using ACE2-mediated inhibition as a surrogate for neutralization. J Clin Microbiol 59(2):e02489–20. https://doi.org/10.1128/JCM.02489-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu JL, Tseng WP, Lin CH, et al (2020) Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J Infect 81(3):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lou B, Li TD, Zheng SF, et al (2020) Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. Eur Respir J 56(2):2000763. https://doi.org/10.1183/13993003.00763-2020

    Article  CAS  PubMed  Google Scholar 

  8. Nicol T, Lefeuvre C, Serri O, et al (2020) Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech). J Clin Virol 129:104511. https://doi.org/10.1016/j.jcv.2020.104511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cameron A, Bohrhunter JL, Porterfield CA, et al (2022) Simultaneous Measurement of IgM and IgG Antibodies to SARS-CoV-2 Spike, RBD, and Nucleocapsid Multiplexed in a Single Assay on the xMAP INTELLIFLEX DR-SE Flow Analyzer. Microbiol Spectr 10(2):e0250721. https://doi.org/10.1128/spectrum.02507-21

    Article  CAS  PubMed  Google Scholar 

  10. Ndiaye MDB, Rasoloharimanana LT, Razafimahatratra SL,et al (2022) Using a multiplex serological assay to estimate time since SARS-CoV-2 infection and past clinical presentation in Malagasy patients. SSRN 4081990. https://assets.researchsquare.com/files/rs-1583923/v1/6636f026-08c9-4c44-9903-e76c349ad736.pdf?c=1653313471

  11. Dobaño C, Vidal M, Santano R, et al (2022) Highly sensitive and specific multiplex antibody assays to quantify immunoglobulins M, A, and G against SARS-CoV-2 antigens. J Clin Microbiol 59(2):e01731–20. https://doi.org/10.1128/JCM.01731-20

    Article  Google Scholar 

  12. King A, King G, Weiss C, et al (2022) Detection of IgG Antibodies to SARS-CoV-2 and Neutralizing Capabilities Using the Luminex xMAP SARS-CoV-2 Multi-Antigen IgG Assay. Methods Mol Biol 2511:257–271

    Article  PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention (2021) Interim Guidelines for COVID-19 Antibody Testing. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html

  14. Iriemenam NC, Ige FA, Greby SM, et al (2022) Validation of xMAP SARS-CoV-2 Multi-Antigen IgG assay in Nigeria. Plos One 17(4):e0266184. https://doi.org/10.1371/journal.pone.0266184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turgeon CT, Sanders KA, Rinaldo P, et al (2021) Validation of a multiplex flow immunoassay for detection of IgG antibodies against SARS-CoV-2 in dried blood spots. Plos One 16(5):e0252621. https://doi.org/10.1371/journal.pone.0252621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartsch YC, St Denis KJ, Kaplonek P, et al (2022) SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children. Sci Transl Med 14(672):eabn9237. https://doi.org/10.1126/scitranslmed.abn9237

    Article  CAS  PubMed  Google Scholar 

  17. Benschop RJ, Tuttle JL, Zhang L, et al (2022) The anti-SARS-CoV-2 monoclonal antibody, bamlanivimab, minimally impacts the endogenous immune response to COVID-19 vaccination. Sci Transl Med 14(655):eabn3041. https://doi.org/10.1126/scitranslmed.abn3041

    Article  CAS  PubMed  Google Scholar 

  18. Hermann EA, Lee B, Balte PP, et al (2022) Association of Symptoms After COVID-19 Vaccination With Anti–SARS-CoV-2 Antibody Response in the Framingham Heart Study. JAMA Netw Open 5(10):e2237908. https://doi.org/10.1001/jamanetworkopen.2022.37908

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gray KJ, Bordt EA, Atyeo C, et al (2021) Coronavirus disease 2019 vaccine response in pregnant and lactating women: a cohort study. Am J Obstet Gynecol 225(3):303.e1–303.e17. https://doi.org/10.1016/j.ajog.2021.03.023.

    Article  CAS  PubMed  Google Scholar 

  20. Walsh EE, Frenck RW Jr, Falsey AR, et al (2020) Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Eng J Med 383(25):2439–2450.

    Article  CAS  Google Scholar 

  21. Frenck RW, et al., Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. N Eng J Med 385(3):239–250

    Google Scholar 

  22. Mariën J, Ceulemans A, Michiels J, et al (2021) Evaluating SARS-CoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe and mild COVID-19 cases using a Luminex bead-based assay. J Virol Methods 288:114025. https://doi.org/10.1016/j.jviromet.2020.114025

    Article  CAS  PubMed  Google Scholar 

  23. Lim MD (2018) Dried blood spots for global health diagnostics and surveillance: opportunities and challenges. Am J Trop Med Hyg 99(2):256–265

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patton JC, Akkers E, Coovadia AH, et al (2007) Evaluation of dried whole blood spots obtained by heel or finger stick as an alternative to venous blood for diagnosis of human immunodeficiency virus type 1 infection in vertically exposed infants in the routine diagnostic laboratory. Clin Vaccine Immunol 14(2):201–203

    Article  CAS  PubMed  Google Scholar 

  25. Schultz JS, McCarthy MK, Rester C, et al (2021) Development and validation of a multiplex microsphere immunoassay using dried blood spots for SARS-CoV-2 seroprevalence: application in first responders in Colorado, USA. J Clin Microbiol 59(6):e00290–21. doi: https://doi.org/10.1128/JCM.00290-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laing ED, Sterling SL, Richard SA, et al (2021) Antigen-based multiplex strategies to discriminate SARS-CoV-2 natural and vaccine induced immunity from seasonal human coronavirus humoral responses. medRxiv. 2021.02.10.21251518. https://doi.org/10.1101/2021.02.10.21251518

  27. Laing ED, Sterling S, Richard S, et al (2020) A betacoronavirus multiplex microsphere immunoassay detects early SARS-CoV-2 seroconversion and controls for pre-existing seasonal human coronavirus antibody cross-reactivity. Res Sq. rs.3.rs-105768. https://doi.org/10.21203/rs.3.rs-105768/v1

  28. Moe AMG, Eriksen MB, Schjølberg T, et al (2022) SARS-CoV-2 serological findings and exposure risk among employees in school and retail after first and second wave COVID-19 pandemic in Oslo, Norway: a cohort study. Int J Occup Med Environ Health 35(5):537–547

    Article  PubMed  Google Scholar 

  29. Ruan Q, Yang K, Wang W, et al (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46(5):846–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guan WJ, Liang WH, Zhao Y, et al (2020) Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 55(5):2000547. https://doi.org/10.1183/13993003.00547-2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goyal P, Choi JJ, Pinheiro LC, et al (2020) Clinical characteristics of Covid-19 in New York city. N Eng J Med 382(24):2372–2374

    Article  Google Scholar 

  32. Ragab D, Eldin HS, Taeimah M, et al (2020) The COVID-19 cytokine storm; what we know so far. Front Immunol 11:1446. https://doi.org/10.3389/fimmu.2020.01446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu B, Huang S, Yin L (2021) The cytokine storm and COVID-19. J Med Virol 93(1):250–256

    Article  CAS  PubMed  Google Scholar 

  34. Mahmudpour M, Roozbeh J, Keshavarz M, et al., COVID-19 cytokine storm: The anger of inflammation. Cytokine 133:155151. https://doi.org/10.1016/j.cyto.2020.155151

  35. Noroozi R, Branicki W, Pyrc K, et al (2020) Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine 133:155143. https://doi.org/10.1016/j.cyto.2020.155143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arsentieva NA, Liubimova NE, Batsunov OK, et al (2022) Predictive value of specific cytokines for lethal COVID-19 outcome. Russian Journal of Infection and Immunity 12(5):859–868

    Article  Google Scholar 

  37. Biró E, Szalay B, Beko G (2021) Cytokine profile in SARS-CoV-2 infection and the effect of tocilizumab and convalescent plasma therapy. Clinical Chemistry and Laboratory Medicine 59(9):eA86–eA87

    Google Scholar 

  38. Sun, B., et al., Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells 10(2):386. https://doi.org/10.3390/cells10020386

  39. Patel MA, Knauer MJ, Nicholson M, et al (2022) Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol Med 28(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Dunbar, S. (2023). Multiplex Immunoassay Approaches Using Luminex® xMAP® Technology for the Study of COVID-19 Disease. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_26

Download citation

Publish with us

Policies and ethics