Skip to main content

The COVID-19 Pandemic: SARS-CoV-2 Structure, Infection, Transmission, Symptomology, and Variants of Concern

  • Chapter
  • First Online:
Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1412))

Abstract

Since it was first detected in December 2019, the COVID-19 pandemic has spread across the world and affected virtually every country and territory. The pathogen driving this pandemic is SARS-CoV-2, a positive-sense single-stranded RNA virus which is primarily transmissible though the air and can cause mild to severe respiratory infections in humans. Within the first year of the pandemic, the situation worsened with the emergence of several SARS-CoV-2 variants. Some of these were observed to be more virulent with varying capacities to escape the existing vaccines and were, therefore, denoted as variants of concern. This chapter provides a general overview of the course of the COVID-19 pandemic up to April 2022 with a focus on the structure, infection, transmission, and symptomology of the SARS-CoV-2 virus. The main objectives were to investigate the effects of the variants of concern on the trajectory of the virus and to highlight a potential pathway for coping with the current and future pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis A. COVID Evaluation Model Estimates 57 Percent of World Population Infected at Least Once. Newsweek April 28, 2022. https://www.newsweek.com/covid-evaluation-model-estimates-57-percent-world-population-infected-least-once-1672440. Accessed April 28, 2022

  2. Devlin H. Seven in 10 people in England have had Covid, research shows. The Guardian April 22, 2022. https://www.theguardian.com/world/2022/apr/22/seven-in-10-people-in-england-have-had-covid-research-shows-omicron. Accessed April 28, 2022

  3. COVID-19 Coronavirus pandemic. https://www.worldometers.info/coronavirus/. Accessed April 28, 2022

  4. Thye AY, Law JW, Pusparajah P, et al (2021) Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines 9(10):1303. https://doi.org/10.3390/biomedicines9101303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coronavirus (COVID-19) Vaccinations. https://ourworldindata.org/covid-vaccinations?country=OWID_WRL. Accessed April 28, 2022

  6. Zhou P, Yang XL, Wang XG, et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu F, Zhao S, Yu B, et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19%2D%2D-11-march-2020. Accessed April 28, 2022

  9. He JF, Xu RH, Yu DW, et al (2003) [Severe acute respiratory syndrome in Guangdong Province of China: epidemiology and control measures]. Zhonghua Yu Fang Yi Xue Za Zhi. 37(4):227–232

    Google Scholar 

  10. Zhong NS, Zheng BJ, Li YM, et al (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362(9393):1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zaki AM, van Boheemen S, Bestebroer TM, et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820

    Article  CAS  PubMed  Google Scholar 

  12. Bleibtreu A, Bertine M, Bertin C, et al (2019) Focus on Middle East respiratory syndrome coronavirus (MERS-CoV). Med Mal Infect 50(3):243–251

    Article  PubMed  PubMed Central  Google Scholar 

  13. Naqvi AAT, Fatima K, Mohammad T, et al (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866(10):165878. https://doi.org/10.1016/j.bbadis.2020.165878

    Article  CAS  Google Scholar 

  14. Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ksiazek TG, Erdman D, Goldsmith CS, et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966

    Article  CAS  PubMed  Google Scholar 

  16. Neil D, Moran L, Horsfield C, et al (2020) Ultrastructure of cell trafficking pathways and coronavirus: how to recognise the wolf amongst the sheep. J Pathol 252(4):346–357

    Article  CAS  PubMed  Google Scholar 

  17. Bandaru R, Rout SR, Kamble OS, et al (2022) Clinical progress of therapeutics and vaccines: Rising hope against COVID-19 treatment. Process Biochem. 2022 Jul;118:154–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu A, Peng Y, Huang B, et al (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020 Mar 11;27(3):325–328

    Google Scholar 

  20. Rastogi M, Pandey N, Shukla A, et al (2020) SARS coronavirus 2: from genome to infectome. Respir Res 21(1):318. https://doi.org/10.1186/s12931-020-01581-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thakur S, Sasi S, Pillai SG, et al (2022) SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med (Lausanne) 9:815389. https://doi.org/10.3389/fmed.2022.815389

    Article  PubMed  Google Scholar 

  22. World Health Organization; Operational planning guidance to support country preparedness and response COVID-19 strategic preparedness and response. https://www.who.int/publications/i/item/draft-operational-planning-guidance-for-un-country-teams. Accessed May 02, 2022

  23. Hoffmann M, Kleine-Weber H, Schroeder S, et al (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Zhang Y, Wu L, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 181(4):894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045

  25. Van Vo G, Bagyinszky E, Park YS, et al (2021) SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus. Adv Exp Med Biol 1321:3–19

    Article  PubMed  Google Scholar 

  26. Li MY, Li L, Zhang Y, et al (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020 Apr 28;9(1):45. https://doi.org/10.1186/s40249-020-00662-x

  27. Hernández VS, Zetter MA, Guerra EC, et al (2021) ACE2 expression in rat brain: Implications for COVID-19 associated neurological manifestations. Exp Neurol 345:113837. https://doi.org/10.1016/j.expneurol.2021.113837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smeekens SP, Steiner DF (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem 265(6):2997–3000

    Article  CAS  PubMed  Google Scholar 

  29. Hasan A, Paray BA, Hussain A, et al (2021) A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 39(8):3025–3033

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Xiang R, Huo S, et al () Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 6(1):233. https://doi.org/10.1038/s41392-021-00653-w

  31. Evans JP, Liu SL (2021) Role of host factors in SARS-CoV-2 entry. J Biol Chem 297(1):100847. https://doi.org/10.1016/j.jbc.2021.100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Romano M, Ruggiero A, Squeglia F, et al (2020) A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 9(5):1267. https://doi.org/10.3390/cells9051267

    Article  CAS  PubMed  Google Scholar 

  33. Maranon DG, Anderson JR, Maranon AG, et al (2020) The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. Wiley Interdiscip Rev RNA 11(5):e1614. https://doi.org/10.1002/wrna.1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. V’kovski P, Kratzel A, Steiner S, et al (2020) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang H, Rao Z (2021) Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 19(11):685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tavasolian F, Hatam GR, Mosawi SH, et al (2021) The Immune Response and Effectiveness of COVID-19 Therapies. Adv Exp Med Biol 1321:115–126

    Article  CAS  PubMed  Google Scholar 

  37. Saghafi N, Rezaee SA, Momtazi-Borojeni AA, et al (2022) The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci 294:120392. https://doi.org/10.1016/j.lfs.2022.120392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun P, Qie S, Liu Z, et al (2020) Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J Med Virol 92(6):612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao Y, Liu X, Xiong L, et al (2020) Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. J Med Virol 92(9):1449–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oran DP, Topol EJ (2021) The Proportion of SARS-CoV-2 Infections That Are Asymptomatic: A Systematic Review. Ann Intern Med 174(5):655–662

    Article  PubMed  Google Scholar 

  41. Agyeman AA, Chin KL, Landersdorfer CB et al (2020) Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc 95(8):1621–1631

    Article  CAS  PubMed  Google Scholar 

  42. Saniasiaya J, Islam MA, Abdullah B (2021) Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-analysis of 27,492 Patients. Laryngoscope 131(4):865–878

    Article  CAS  PubMed  Google Scholar 

  43. CDC; Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html

  44. Tajbakhsh A, Gheibi Hayat SM, et al (2021) COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 19(3):345–357

    Article  CAS  PubMed  Google Scholar 

  45. Jafari-Oori M, Ghasemifard F, Ebadi A, et al (2021) Acute Respiratory Distress Syndrome and COVID-19: A Scoping Review and Meta-analysis. Adv Exp Med Biol 1321:211–228

    Article  CAS  PubMed  Google Scholar 

  46. Bonakdaran S, Layegh P, Hasani S, et al (2022) The Prognostic Role of Metabolic and Endocrine Parameters for the Clinical Severity of COVID-19. Dis Markers 5106342. https://doi.org/10.1155/2022/5106342

  47. Hatamabadi H, Sabaghian T, Sadeghi A, et al (2022) Epidemiology of COVID-19 in Tehran, Iran: A Cohort Study of Clinical Profile, Risk Factors, and Outcomes. Biomed Res Int 2022:2350063. https://doi.org/10.1155/2022/2350063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh AK, Gillies CL, Singh R, et al (2020) Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes Metab 22(10):1915–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoong CWS, Hussain I, Aravamudan VM, et al (2021) Obesity is Associated with Poor Covid-19 Outcomes: A Systematic Review and Meta-Analysis. Horm Metab Res 53(2):85–93

    Article  CAS  PubMed  Google Scholar 

  50. Du P, Li D, Wang A, et al (2021) A Systematic Review and Meta-Analysis of Risk Factors Associated with Severity and Death in COVID-19 Patients. Can J Infect Dis Med Microbiol 2021:6660930. https://doi.org/10.1155/2021/6660930

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kastora S, Kounidas G, Perrott S, et al (2021) Clinical frailty scale as a point of care prognostic indicator of mortality in COVID-19: a systematic review and meta-analysis. EClinicalMedicine 36:100896. https://doi.org/10.1016/j.eclinm.2021.100896

    Article  PubMed  PubMed Central  Google Scholar 

  52. Loomba RS, Villarreal EG, Farias JS, et al (2022) Serum biomarkers for prediction of mortality in patients with COVID-19. Ann Clin Biochem 59(1):15–22

    Article  CAS  PubMed  Google Scholar 

  53. Ai T, Yang Z, Hou H, et al (2020) Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 296(2):E32–E40. https://doi.org/10.1148/radiol.2020200642

    Article  CAS  PubMed  Google Scholar 

  54. Pourhoseingholi A, Vahedi M, Chaibakhsh S, et al (2021) Deep Learning Analysis in Prediction of COVID-19 Infection Status Using Chest CT Scan Features. Adv Exp Med Biol 1327:139–147

    Article  PubMed  Google Scholar 

  55. Yun Y, Wang Y, Hao Y, et al (2020) The time course of chest CT lung changes in COVID-19 patients from onset to discharge. Eur J Radiol Open 8:100305. https://doi.org/10.1016/j.ejro.2020.100305

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ishfaq A, Yousaf Farooq SM, Goraya A, et al (2021) Role of High Resolution Computed Tomography chest in the diagnosis and evaluation of COVID -19 patients -A systematic review and meta-analysis. Eur J Radiol Open 8:100350. https://doi.org/10.1016/j.ejro.2021.100350

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edler C, Schröder AS, Aepfelbacher M, et al (2020) Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med 134(4):1275–1284

    Article  PubMed  Google Scholar 

  58. Bryce C, Grimes Z, Pujadas E, et al (2021) Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod Pathol 34(8):1456–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mondello C, Roccuzzo S, Malfa O, et al (2021) Pathological Findings in COVID-19 as a Tool to Define SARS-CoV-2 Pathogenesis. A Systematic Review. Front Pharmacol. 12:614586. https://doi.org/10.3389/fphar.2021.614586

    Article  CAS  PubMed  Google Scholar 

  60. Khismatullin RR, Ponomareva AA, Nagaswami C, et al (2021) Pathology of lung-specific thrombosis and inflammation in COVID-19. J Thromb Haemost 19(12):3062–3072

    Article  CAS  PubMed  Google Scholar 

  61. George JA, Mayne ES (2021) The Novel Coronavirus and Inflammation. Adv Exp Med Biol 1321:127–138

    Article  CAS  PubMed  Google Scholar 

  62. Vasilevska V, Guest PC, Bernstein HG, et al (2021) Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-19 cases. J Neuroinflammation 18(1):245. https://doi.org/10.1007/978-3-030-59261-5_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caron P (2020) Thyroid disorders and SARS-CoV-2 infection: From pathophysiological mechanism to patient management. Ann Endocrinol (Paris) 81(5):507–510

    Article  PubMed  Google Scholar 

  64. Mahrooz A, Muscogiuri G, Buzzetti R, et al (2021) The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism. Endocrine 72(2):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McFadyen JD, Stevens H, Peter K (2020) The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications. Circ Res 127(4):571–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miesbach W, Makris M (2020) COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin Appl Thromb Hemost 26:1076029620938149. https://doi.org/10.1177/1076029620938149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Srivastava R, Parveen R, Mishra P, et al (2021) Venous thromboembolism is linked to severity of disease in COVID-19 patients: A systematic literature review and exploratory meta-analysis. Int J Clin Pract 75(12):e14910. doi: https://doi.org/10.1111/ijcp.14910

    Article  CAS  PubMed  Google Scholar 

  68. Khatoon F, Prasad K, Kumar V (2020) Neurological manifestations of COVID-19: available evidences and a new paradigm. J Neurovirol 26(5):619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bandeira IP, Schlindwein MAM, Breis LC, et al (2021) Neurological Complications of the COVID-19 Pandemic: What Have We Got So Far? Adv Exp Med Biol 1321:21–31

    Article  CAS  PubMed  Google Scholar 

  70. Polito MV, Silverio A, Bellino M, et al (2020) Cardiovascular Involvement in COVID-19: What Sequelae Should We Expect? Cardiol Ther 10(2):377–396

    Article  Google Scholar 

  71. Sinha P, Bos LD (2021) Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin 37(4):795–815

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yahia AIO (2022) Liver Injury and Dysfunction Associated with COVID-19: a Review Article. Clin Lab 68(1). https://doi.org/10.7754/Clin.Lab.2021.210535

  73. Jafari-Oori M, Fiorentino M, Castellano G, et al (2021) Acute Kidney Injury and Covid-19: A Scoping Review and Meta-Analysis. Adv Exp Med Biol 1321:309–324

    Article  CAS  PubMed  Google Scholar 

  74. George JA, Khoza S (2021) SARS-CoV-2 Infection and the Kidneys: An Evolving Picture. Adv Exp Med Biol 1327:107–118

    Article  PubMed  Google Scholar 

  75. Burger B, Rodrigues HG (2021) Cutaneous Manifestations of COVID-19: Early Diagnosis and Prognostic Information. Adv Exp Med Biol 1327:119–127

    Article  PubMed  Google Scholar 

  76. Farinazzo E, Dianzani C, Zalaudek Iet al (2021) Synthesis of the Data on COVID-19 Skin Manifestations: Underlying Mechanisms and Potential Outcomes. Clin Cosmet Investig Dermatol 14:991–997

    Google Scholar 

  77. Loganathan S, Kuppusamy M, Wankhar W, et al (2021) Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol 283:103548. https://doi.org/10.1016/j.resp.2020.103548

    Article  CAS  PubMed  Google Scholar 

  78. Lopes-Pacheco M, Silva PL, Cruz FF, et al (2021) Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front Physiol 12:593223. https://doi.org/10.3389/fphys.2021.593223

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lostroh P (2019) Molecular and Cellular Biology of Viruses. Garland Science; Taylor & Francis; New York, NY, USA. ISBN-13: 978-0815345237

    Google Scholar 

  80. Wang R, Chen J, Wei GW (2021) Mechanisms of SARS-CoV-2 Evolution Revealing Vaccine-Resistant Mutations in Europe and America. J Phys Chem Lett 12(49):11850–11857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fleischmann WR Jr (1996) Chapter 43: Viral Genetics. In Medical Microbiology. 4th edition; Baron S (ed); University of Texas Medical Branch at Galveston; Galveston, TX, USA. ISBN-13: 978-0963117212

    Google Scholar 

  82. Wise J (2020) Covid-19: New coronavirus variant is identified in UK. BMJ 371:m4857. https://doi.org/10.1136/bmj.m4857

    Article  PubMed  Google Scholar 

  83. World Health Organization; COVID-19 Weekly Epidemiological Update (2021) https://www.who.int/docs/default-source/coronaviruse/situationreports/20210622_weekly_epi_update_45.pdf

  84. World Health Organization; Tracking SARS-CoV-2 Variants. https://www.who.int/activities/tracking-SARS-CoV-2-variants

  85. Hart WS, Miller E, Andrews NJ, et al (2022) Generation time of the alpha and delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infect Dis 22(5):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. World Health Organization (2021) COVID-19 weekly epidemiological update, edition 42, 1 June 2021. https://apps.who.int/iris/handle/10665/341622

  87. Campbell F, Archer B, Laurenson-Schafer H, et al (2021) Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill 26(24):2100509. https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Global Lineage Reports; Variants of Concern (2022) https://cov-lineages.org/index.html#global_reports

  89. Ramanathan M, Ferguson ID, Miao W, et al (2021) SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect Dis 21(8):1070. https://doi.org/10.1016/S1473-3099(21)00262-0

  90. Supasa P, Zhou D, Dejnirattisai W, et al (2021) Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell 184(8):2201–2211.e7. https://doi.org/10.1016/j.cell.2021.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang P, Nair MS, Liu L, et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135

    Article  CAS  PubMed  Google Scholar 

  92. Shen X, Tang H, McDanal C, et al (2021) SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 29(4):529–539.e3. https://doi.org/10.1016/j.chom.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dejnirattisai W, Zhou D, Supasa P, et al (2021) Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184(11):2939–2954.e9. https://doi.org/10.1016/j.cell.2021.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Leung K, Shum MH, Leung GM, et al (2021) Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 26(1):2002106. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106

    Article  PubMed  PubMed Central  Google Scholar 

  95. Volz E, Mishra S, Chand M, et al (2021) Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593(7858):266–269

    Article  CAS  PubMed  Google Scholar 

  96. Korber B, Fischer WM, Gnanakaran S, et al (2020) Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182(4):812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park G, Hwang BH (2021) SARS-CoV-2 Variants: Mutations and Effective Changes. Biotechnol Bioprocess Eng 26(6):859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tegally H, Wilkinson E, Giovanetti M, et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) line-age with multiple spike mutations in South Africa. MedRxiv. https://doi.org/10.1101/2020.12.21.20248640

  99. Tegally H, Wilkinson E, Giovanetti M, et al (2021) Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592(7854):438–443

    Article  CAS  PubMed  Google Scholar 

  100. Salleh MZ, Derrick JP, Deris ZZ (2021) Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. Int J Mol Sci 2(14):7425. https://doi.org/10.3390/ijms22147425

    Article  CAS  Google Scholar 

  101. Stanford University; Coronavirus Antiviral & Resistance Database; SARS-CoV-2 Variants. https://covdb.stanford.edu/page/mutation-viewer/. Accessed May 13, 2022

  102. Plante JA, Liu Y, Liu J, et al (2021) Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592(7852):116–121

    Article  CAS  PubMed  Google Scholar 

  103. Gobeil SM, Janowska K, McDowell S, et al (2021) Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 373(6555):eabi6226. https://doi.org/10.1126/science.abi6226

  104. Cerutti G, Rapp M, Guo Y, et al (2021) Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure 29(7):655–663.e4. https://doi.org/10.1016/j.str.2021.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoffmann M, Arora P, Groß R, et al (2021) SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184(9):2384–2393.e12. https://doi.org/10.1016/j.cell.2021.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fischer RJ, van Doremalen N, Adney DR, et al (2021) ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. Nat Commun 12(1):5868. https://doi.org/10.1038/s41467-021-26178-y

  107. Faria NR, Claro IM, Candido D, et al (2021) Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological.Org, pp. 1–9. https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586. Accessed May 13, 2022

  108. McCallum M, De Marco A, Lempp FA, et al (2021) N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184(9):2332–2347.e16. https://doi.org/10.1016/j.cell.2021.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harvey WT, Carabelli AM, Jackson B, et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. World Health Organization. SARS-CoV-2 Delta variant now dominant in much of European region; efforts must be reinforced to prevent transmission, warns WHO Regional Office for Europe and ECDC. https://www.euro.who.int/en/media-centre/sections/press-releases/2021/sars-cov-2-delta-variant-now-dominant-in-much-of-european-region-efforts-must-be-reinforced-to-prevent-transmission,-warns-who-regional-office-for-europe-and-ecdc. Accessed May 16, 2022

  111. Zhan Y, Yin H, Yin JY (2022) B.1.617.2 (Delta) Variant of SARS-CoV-2: features, transmission and potential strategies. Int J Biol Sci 18(5):1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baral P, Bhattarai N, Hossen ML, et al (2021) Mutation-induced changes in the receptor-binding interface of the SARS-CoV-2 Delta variant B.1.617.2 and implications for immune evasion. Biochem Biophys Res Commun 574:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Samieefar N, Rashedi R, Akhlaghdoust M, et al (2020) Delta Variant: The New Challenge of COVID-19 Pandemic, an Overview of Epidemiological, Clinical, and Immune Characteristics. Acta Biomed 93(1):e2022179. https://doi.org/10.23750/abm.v93i1.12210

    Article  CAS  Google Scholar 

  114. Tchesnokova V, Kulasekara H, Larson L, et al (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. J Clin Microbiol 59(11):e0092121. https://doi.org/10.1128/JCM.00921-21

    Article  PubMed  Google Scholar 

  115. Wang Y, Liu C, Zhang C, et al (2022) Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun. 2022 Feb 15;13(1):871. https://doi.org/10.1038/s41467-022-28528-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Planas D, Veyer D, Baidaliuk A, et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596(7871):276–280

    Article  CAS  PubMed  Google Scholar 

  117. Kuzmina A, Wattad S, Engel S, et al (2022) Functional Analysis of Spike from SARS-CoV-2 Variants Reveals the Role of Distinct Mutations in Neutralization Potential and Viral Infectivity. Viruses 14(4):803. https://doi.org/10.3390/v14040803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Statistica. Number of SARS-CoV-2 Omicron variant cases worldwide as of May 16, 2022, by country or territory. https://www.statista.com/statistics/1279100/number-omicron-variant-worldwide-by-country/. Accessed May 16, 2022

  119. BBC News. Covid: Why are so many people catching it again? April 22, 2022. https://www.bbc.co.uk/news/health-60913637. Accessed May 16, 2022

  120. UK Parliament. COVID-19: Omicron, recent developments, and the likely impact of future variants on the pandemic. Published Monday, 07 March, 2022. https://post.parliament.uk/covid-19-omicron-recent-developments-and-the-likely-impact-of-future-variants-on-the-pandemic/. Accessed May 16, 2022

  121. Islam F, Dhawan M, Nafady MH, et al (2022) Understanding the omicron variant (B.1.1.529) of SARS-CoV-2: Mutational impacts, concerns, and the possible solutions. Ann Med Surg (Lond) 78:103737. https://doi.org/10.1016/j.amsu.2022.103737

    Article  PubMed  Google Scholar 

  122. Thakur V, Ratho RK (2022) OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol 94(5):1821–1824

    Article  CAS  PubMed  Google Scholar 

  123. Lubin JH, Markosian C, Balamurugan D, et al (2021) Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. bioRxiv 2021.12.12.472313. https://doi.org/10.1101/2021.12.12.472313

  124. Kannan SR, Spratt AN, Sharma K, et al (2022) Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. J Autoimmun 126:102779. https://doi.org/10.1016/j.jaut.2021.102779

    Article  CAS  PubMed  Google Scholar 

  125. Saxena SK, Kumar S, Ansari S, et al (2022) Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol 94(4):1738–1744

    Article  CAS  PubMed  Google Scholar 

  126. Arora S, Grover V, Saluja P, et al (2022) Literature Review of Omicron: A Grim Reality Amidst COVID-19. Microorganisms 10(2):451. https://doi.org/10.3390/microorganisms10020451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhao H, Lu L, Peng Z, et al (2022) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 11(1):277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kumar S, Thambiraja TS, Karuppanan K, et al (2022) Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J Med Virol 94(4):1641–1649

    Article  CAS  PubMed  Google Scholar 

  129. Hu YF, Hu JC, Gong HR, et al (2022) Computation of Antigenicity Predicts SARS-CoV-2 Vaccine Breakthrough Variants. Front Immunol 13:861050. https://doi.org/10.3389/fimmu.2022.861050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shao W, Zhang W, Fang X, et al (2022) Challenges of SARS-CoV-2 Omicron Variant and appropriate countermeasures. J Microbiol Immunol Infect S1684-1182(22)00054-8. https://doi.org/10.1016/j.jmii.2022.03.007

    Article  CAS  Google Scholar 

  131. Brown W. New omicron sub-variants behind South Africa’s Covid surge, scientists say. The Telegraph. https://www.telegraph.co.uk/global-health/science-and-disease/new-omicron-sub-variants-behind-south-africas-covid-surge-scientists/. Accessed May 17, 2022

  132. Callaway E (2022) Are COVID surges becoming more predictable? New Omicron variants offer a hint. Nature 605(7909):204–206

    Article  CAS  PubMed  Google Scholar 

  133. World Health Organization (Sep 2021) Global COVID-19 Vaccination – Strategic Vision for 2022. https://cdn.who.int/media/docs/default-source/immunization/sage/covid/global-covid-19-vaccination-strategic-vision-for-2022_sage-yellow-book.pdf. Accessed May 17, 2022

  134. UK Parliament (March 7, 2022) COVID-19: Omicron, recent developments, and the likely impact of future variants on the pandemic. https://post.parliament.uk/covid-19-omicron-recent-developments-and-the-likely-impact-of-future-variants-on-the-pandemic/. Accessed May 17, 2022

  135. GOV.UK (May 6, 2022) COVID-19 variants identified in the UK https://www.gov.uk/government/news/covid-19-variants-identified-in-the-uk#:~:text=As%20of%202%20May%202022,have%20been%20detected%20in%20England. Accessed May 17, 2022

  136. Nextstrain; SARS-CoV-2 resources; CoVariants (mutations and variants of interest). https://nextstrain.org/sars-cov-2/. Accessed May 17, 2022

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guest, P.C., Kesharwani, P., Butler, A.E., Sahebkar, A. (2023). The COVID-19 Pandemic: SARS-CoV-2 Structure, Infection, Transmission, Symptomology, and Variants of Concern. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_1

Download citation

Publish with us

Policies and ethics