Skip to main content

Axonal Transport Defects in Retinal Ganglion Cell Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases XIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1415))

  • 1578 Accesses

Abstract

For the survival and maintenance of retinal ganglion cells (RGCs), axonal transportation is fundamental. Axonal transportation defects can cause severe neuropathies leading to neuronal loss. Axonal transport defects usually precede axonal degeneration and RGC loss in disease models. To date, the main causes of axonal transport defects have not been fully understood. Therefore, elucidation of the mechanisms that lead to transport defects will help us to develop novel therapeutic targets and early diagnostic tools. In this review, we provide an overview of optic neuropathies and axonal degeneration with a focus on axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

ATP:

Adenine triphosphate

CTB:

Cholera toxin B

GC:

Glucocorticoid

DEX:

Dexamethasone-21-acetate

DOA:

Dominant optic atrophy

IOP:

Intraocular pressure

LGN:

Lateral geniculate nucleus

LHON:

Leber’s hereditary optic neuropathy

NMDA:

N-methyly-D-aspartate 

OPA 1:

Optic atrophy 1

POAG:

Primary open-angle glaucoma

RNFL:

Retinal nerve fiber layer

RGC:

Retinal ganglion cell

SC:

Superior colliculus

TEM:

Transmission electron microscopy

TTc:

Tetanus toxin

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The cytoskeleton. In: Bochicchio A, editor. Molecular biology of the cell. New York: Taylor and Francis Group; 2014. p. 939–47.

    Google Scholar 

  2. Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68(4):610–38.

    Article  CAS  PubMed  Google Scholar 

  3. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol. 2018;19(6):382–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu D-Y, Cringle SJ, Balaratnasingam C, Morgan WH, Paula KY, Su E-N. Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res. 2013;36:217–46.

    Article  CAS  PubMed  Google Scholar 

  5. Morgan JE. Circulation and axonal transport in the optic nerve. Eye. 2004;18(11):1089–95.

    Article  CAS  PubMed  Google Scholar 

  6. Dengler-Crish CM, Smith MA, Inman DM, Wilson GN, Young JW, Crish SD. Anterograde transport blockade precedes deficits in retrograde transport in the visual projection of the DBA/2J mouse model of glaucoma. Front Neurosci. 2014;8:290.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fischer RA, Risner ML, Roux AL, Wareham LK, Sappington RM. Impairment of membrane repolarization accompanies axon transport deficits in glaucoma. Front Neurosci. 2019;13:1139.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Le Roux LG, Qiu X, Jacobsen MC, Pagel MD, Gammon ST, Piwnica-Worms DR, et al. Axonal transport as an in vivo biomarker for retinal neuropathy. Cell. 2020;9(5):1298.

    Article  Google Scholar 

  9. Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol. 2019;15(12):691–703.

    Article  PubMed  Google Scholar 

  10. Herro AM, Lam BL. Retrograde degeneration of retinal ganglion cells in homonymous hemianopsia. Clin Ophthalmol. 2015;9:1057.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. IOVS. 1980;19(2):137–52.

    CAS  Google Scholar 

  12. Quigley HA, Addicks EM, Green WR, Maumenee A. Optic nerve damage in human glaucoma: II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.

    Article  CAS  PubMed  Google Scholar 

  13. Schellingerhout D, Le Roux LG, Bredow S, Gelovani JG. Fluorescence imaging of fast retrograde axonal transport in living animals. Mol Imaging. 2009;8(6):319–29.

    Article  CAS  PubMed  Google Scholar 

  14. O’Neill EC, Danesh-Meyer HV, Connell PP, Trounce IA, Coote MA, Mackey DA, et al. The optic nerve head in acquired optic neuropathies. Nat Rev Neurol. 2010;6(4):221–36.

    Article  PubMed  Google Scholar 

  15. O’Neill EC, Mackey DA, Connell PP, Hewitt AW, Danesh-Meyer HV, Crowston JG. The optic nerve head in hereditary optic neuropathies. Nat Rev Neurol. 2009;5(5):277–87.

    Article  PubMed  Google Scholar 

  16. Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017;36:186–92.

    Article  CAS  PubMed  Google Scholar 

  17. Yu-Wai-Man P, Chinnery PF. Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates. Ophthalmology. 2013;120(8):1712–e1.

    Article  PubMed  Google Scholar 

  18. Pesch UE, Leo-Kottler B, Mayer S, Jurklies B, Kellner U, Apfelstedt-Sylla E, et al. OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum Mol Genet. 2001;10(13):1359–68.

    Article  CAS  PubMed  Google Scholar 

  19. Lenaers G, Neutzner A, Le Dantec Y, Juschke C, Xiao T, Decembrini S, et al. Dominant optic atrophy: culprit mitochondria in the optic nerve. Prog Retin Eye Res. 2020;83:100935.

    Article  PubMed  Google Scholar 

  20. Hage R, Vignal-Clermont C. Leber hereditary optic neuropathy: review of treatment and management. Front Neurol. 2021;12:651639.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol. 2019;39(1):259–71.

    Article  PubMed  Google Scholar 

  22. Group CN-TGS. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126(4):487–97.

    Article  Google Scholar 

  23. Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. PNAS. 2010;107(11):5196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. BBA-Bioenergetics. 2009;1787(5):518–28.

    Article  CAS  PubMed  Google Scholar 

  25. Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, et al. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain. 2007;130(Pt 4):1029–42.

    PubMed  Google Scholar 

  26. Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. PNAS. 2015;112(33):10515–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiasseu M, Vargas JLC, Destroismaisons L, Velde CV, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci. 2016;36(21):5785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiasseu M, Alarcon-Martinez L, Belforte N, Quintero H, Dotigny F, Destroismaisons L, et al. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12(1):1–20.

    Article  Google Scholar 

  29. Yih-Chung, Tham Xiang, Li Tien Y., Wong Harry A., Quigley Tin, Aung Ching-Yu, Cheng (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040 Ophthalmology 121(11) 2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

  30. Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy The American Journal of Pathology (2012);181(1): 62–73. https://doi.org/10.1016/j.ajpath.2012.03.030

  31. Prabhavathi, Maddineni Ramesh B., Kasetti Pinkal D., Patel J. Cameron, Millar Charles, Kiehlbauch Abbot F., Clark Gulab S., Zode. CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma Abstract Molecular Neurodegeneration 2020;15(1). https://doi.org/10.1186/s13024-020-00400-9

  32. Neuronal death in glaucoma Progress in Retinal and Eye Research 1999;18(1):39–57. https://doi.org/10.1016/S1350-9462(98)00014-7

  33. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma American Journal of Ophthalmology 1998;126(4): 498–505. https://doi.org/10.1016/S0002-9394(98)00272-4

  34. John, Simon & Smith, R & Savinova, Olga & Hawes, N & Chang, Bennny & Turnbull, D & Davisson, M & Roderick, T & Heckenlively, J. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Investigative ophthalmology & visual science. 1998;39:951–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cavit Agca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okan, I.C.T., Ozdemir, F., Agca, C. (2023). Axonal Transport Defects in Retinal Ganglion Cell Diseases. In: Ash, J.D., Pierce, E., Anderson, R.E., Bowes Rickman, C., Hollyfield, J.G., Grimm, C. (eds) Retinal Degenerative Diseases XIX. Advances in Experimental Medicine and Biology, vol 1415. Springer, Cham. https://doi.org/10.1007/978-3-031-27681-1_32

Download citation

Publish with us

Policies and ethics