Skip to main content

A Systematic Review on Fog Computing Security Algorithms on Current IoT Applications and Solutions

  • Conference paper
  • First Online:
Deep Sciences for Computing and Communications (IconDeepCom 2022)

Abstract

Fog computing models consist of a cloud-like platform that possesses different layers like application services, data, storage, and computation. Fog computing and cloud computing were considered similar in multiple aspects although the cloud operates as a centralized infrastructure whereas Fog computing is a distributed decentralized system. With Fog systems a large amount of data can be processed and operated through the on-premise equipment. Fog systems can be installed on heterogeneous hardware. It is indispensable to have Internet of Things (IoT) devices with rapid processing and transmitting capabilities. Several security issues about monitoring, data, malware, segregation, virtualization, and network are intensified by this broad range of functionality-driven applications. This survey focuses on the modern applications of Fog computing to identify the research gaps in terms of security. Technologies such as Micro-data centers and Cloudlets have also been analyzed in this work. Many of the applications of Fog computing overlook the aspect of security and more attention is given only to the improved functionality. This survey also discusses the consequences of the vulnerabilities and possible solutions, as well as the improved level of security measures in Fog systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco: Fog Computing and the Internet of Things: Extend the Cloud to Where the Things are Online (2015). https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf

  2. Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE Big Data and Social Informatics, vol. 28. ACM (2015)

    Google Scholar 

  3. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing-the business perspective. Decis. Support Syst. 51(1), 176–189 (2011)

    Article  Google Scholar 

  4. Parkinson, S., Ward, P., Wilson, K., Miller, J.: Cyber threats facing autonomous and connected vehicles: future challenges. IEEE Trans. Intell. Transp. Syst. 18, 2898–2915 (2017)

    Article  Google Scholar 

  5. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1–8. IEEE (2014)

    Google Scholar 

  6. Kim, J.Y., Schulzrinne, H.: Cloud support for latency-sensitive telephony applications. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 421–426. IEEE (2013)

    Google Scholar 

  7. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  8. Sareen, P., Kumar, P.: The fog computing paradigm. Int. J. Emerg. Technol. Eng. Res. 4, 55–60 (2016)

    Google Scholar 

  9. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)

    Article  Google Scholar 

  10. Saharan, K., Kumar, A.: Fog in comparison to cloud: a survey. Int. J. Comput. Appl. 122(3), 10–12 (2015)

    Google Scholar 

  11. Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principals, architectures, and applications. arXiv preprint arXiv:1601.02752 (2016)

  12. Mahmud, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. arXiv preprint arXiv:1611.05539 (2016)

  13. Cisco: Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things. (2015). https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf

  14. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.: Security Patterns: Integrating Security and Systems Engineering. Wiley (2013)

    Google Scholar 

  15. Satyanarayanan, M.: A brief history of cloud offload: a personal journey from odyssey through cyber foraging to cloudlets. GetMobile: Mob. Comput. Commun. 18(4), 19–23 (2015)

    Google Scholar 

  16. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future Gener. Comput. Syst. 28(3), 583–592 (2012)

    Article  Google Scholar 

  17. Alliance, C.S.: The Treacherous 12 Cloud Computing Top Threats in 2016 (2016). https://downloads.cloudsecurityalliance.org/assets/research/topthreats/Treacherous-12_Cloud-Computing_Top-Threats.pdf

  18. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and its security issues. Concurr. Comput. Pract. Exp. 28, 2991–3005 (2015)

    Article  Google Scholar 

  19. Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: a survey. In: Kuai, X., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 685–695. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21837-3_67

    Chapter  Google Scholar 

  20. Klas, G.I.: Fog computing and mobile edge cloud gain momentum open fog consortium, etsi mec and cloudlets (2015)

    Google Scholar 

  21. Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–8. IEEE (2016)

    Google Scholar 

  22. Series Q, Safety MQ.: Programmable automation controller

    Google Scholar 

  23. Pierson, R.M.: How Does Fog Computing Differ from Edge Computing? (2016). https://readwrite.com/2016/08/05/fog-computing-different-edge-computing-pl1/

  24. Ha, K., Satyanarayanan, M.: Openstack++ for Cloudlet Deployment. School of Computer Science, Carnegie Mellon University, Pittsburgh (2015)

    Google Scholar 

  25. Li, Y., Wang, W.: The unheralded power of cloudlet computing in the vicinity of mobile devices. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 4994–4999. IEEE (2013)

    Google Scholar 

  26. Jaiswal, A., Thakare, V., Sherekar, S.: Performance based analysis of cloudlet architectures in mobile cloud computing

    Google Scholar 

  27. Bahl, V.: Emergence of Micro Datacenter (cloudlets/edges) for Mobile Computing (2015). https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf

  28. Liang, K., Zhao, L., Chu, X., Chen, H.-H.: An integrated architecture for software defined and virtualized radio access networks with fog computing. IEEE Netw. 31(1), 80–87 (2017)

    Article  Google Scholar 

  29. Clinch, S., Harkes, J., Friday, A., Davies, N., Satyanarayanan, M.: How close is close enough? Understanding the role of cloudlets in supporting display appropriation by mobile users. In: 2012 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 122–127. IEEE (2012)

    Google Scholar 

  30. Sindhu, S., Mukherjee, S.: Efficient task scheduling algorithms for cloud computing environment. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds.) HPAGC 2011. CCIS, vol. 169, pp. 79–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22577-2_11

    Chapter  Google Scholar 

  31. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  32. University CM: Elijah: Cloudlet Infrastructure for Mobile Computing. GitHub (2017)

    Google Scholar 

  33. Almorsy, M., Grundy, J., Müller, I.: An analysis of the cloud computing security problem. arXiv preprint arXiv:1609.01107 (2016)

  34. Younis, Y.A., Kifayat, K., Shi, Q., Askwith, B.: A new prime and probe cache side-channel attack for cloud computing. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 1718–1724. IEEE (2015)

    Google Scholar 

  35. Shahid, M.A., Sharif, M.: Cloud computing security models, architectures, issues and challenges: a survey. Smart Comput. Rev. 5, 602–616 (2015)

    Article  Google Scholar 

  36. Zhu, J., Chan, D.S., Prabhu, M.S., Natarajan, P., Hu, H., Bonomi, F.: Improving web sites performance using edge servers in fog computing architecture. In: 2013 IEEE 7th International Symposium on Service Oriented System Engineering (SOSE), pp. 320–323. IEEE (2013)

    Google Scholar 

  37. Krishnan, Y.N., Bhagwat, C.N., Utpat, A.P.: Fog computing-network based cloud computing. In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 250–251. IEEE (2015)

    Google Scholar 

  38. Abdullahi, I., Arif, S., Hassan, S.: Ubiquitous shift with information centric network caching using fog computing. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 327–335. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13153-5_32

    Chapter  Google Scholar 

  39. Su, J., Lin, F., Zhou, X., Lu, X.: Steiner tree based optimal resource caching scheme in fog computing. China Commun. 12(8), 161–168 (2015)

    Article  Google Scholar 

  40. Sivasubramanian, S., Pierre, G., Van Steen, M., Alonso, G.: Analysis of caching and replication strategies for web applications. IEEE Internet Comput. 11(1), 60–66 (2007)

    Article  Google Scholar 

  41. Halfond, W.G., Viegas, J., Orso, A.: A classification of SQL-injection attacks and countermeasures. In: Proceedings of the IEEE International Symposium on Secure Software Engineering, vol. 1, pp. 13–15. IEEE (2006)

    Google Scholar 

  42. Egele, M., Kirda, E., Kruegel, C.: Mitigating drive-by download attacks: challenges and open problems. In: Camenisch, J., Kesdogan, D. (eds.) iNetSec 2009. IAICT, vol. 309, pp. 52–62. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05437-2_5

    Chapter  Google Scholar 

  43. Gao, L., Luan, T.H., Liu, B., Zhou, W., Yu, S.: Fog computing and its applications in 5G. In: Xiang, W., Zheng, K., Shen, X. (eds.) 5G Mobile Communications, pp. 571–593. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-34208-5_21

    Chapter  Google Scholar 

  44. Luan, T.H., Gao, L., Li, Z., Xiang, Y., Sun, L.: Fog computing: focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815 (2015)

  45. Oueis, J., Strinati, E.C., Barbarossa, S.: The fog balancing: load distribution for small cell cloud computing. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6. IEEE (2015)

    Google Scholar 

  46. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing-a key technology towards 5G. ETSI White Pap. 11, 1–16 (2015)

    Google Scholar 

  47. Desmedt, Y.: Man-in-the-middle attack. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 759–759. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5_324

    Chapter  Google Scholar 

  48. Nayak, G.N., Samaddar, S.G.: Different flavours of man-in-the-middle attack, consequences and feasible solutions. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 5, pp. 491–495. IEEE (2010)

    Google Scholar 

  49. Prieto González, L., et al.: Fog computing architectures for healthcare: wireless performance and semantic opportunities. J. Inf. Commun. Ethics Soc. 14(4), 334–349 (2016)

    Article  Google Scholar 

  50. Stantchev, V., Barnawi, A., Ghulam, S., Schubert, J., Tamm, G.: Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 185(2), 121 (2015)

    Google Scholar 

  51. Shi, Y., Ding, G., Wang, H., Roman, H.E., Lu, S.: The fog computing service for healthcare. In: 2015 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech), pp. 1–5. IEEE (2015)

    Google Scholar 

  52. Gia, T.N., Jiang, M., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), pp. 356–363. IEEE (2015)

    Google Scholar 

  53. Cao, Y., Hou, P., Brown, D., Wang, J., Chen, S.: Distributed analytics and edge intelligence: pervasive health monitoring at the era of fog computing. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 43–48. ACM (2015)

    Google Scholar 

  54. Cao, Y., Chen, S., Hou, P., Brown, D.: Fast: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In: 2015 IEEE International Conference on Networking, Architecture and Storage (NAS), pp. 2–11. IEEE (2015)

    Google Scholar 

  55. Li, M., Yu, S., Ren, K., Lou, W.: Securing personal health records in cloud computing: patient-centric and fine-grained data access control in multi-owner settings. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICSSITE, vol. 50, pp. 89–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2_6

    Chapter  Google Scholar 

  56. Ren, K., Lou, W., Zhang, Y.: Leds: providing location-aware end-to-end data security in wireless sensor networks. IEEE Trans. Mob. Comput. 7(5), 585–598 (2008)

    Article  Google Scholar 

  57. Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), pp. 105–112. IEEE (2016)

    Google Scholar 

  58. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)

    Article  Google Scholar 

  59. Do, C.T., Tran, N.H., Pham, C., Alam, M.G.R., Son, J.H., Hong, C.S.: A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing. In: 2015 International Conference on Information Networking (ICOIN), pp. 324–329. IEEE (2015)

    Google Scholar 

  60. Varalakshmi, L.M., Sudha, G.F., Jaikishan, G.: A selective encryption and energy efficient clustering scheme for video streaming in wireless sensor networks. Telecommun. Syst. 56(3), 357–365 (2013). https://doi.org/10.1007/s11235-013-9849-0

    Article  Google Scholar 

  61. Truong, N.B., Lee, G.M., Ghamri-Doudane, Y.: Software defined networking-based vehicular adhoc network with fog computing. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1202–1207. IEEE (2015)

    Google Scholar 

  62. Datta, S.K., Bonnet, C., Haerri, J.: Fog computing architecture to enable consumer centric internet of things services. In: 2015 International Symposium on Consumer Electronics (ISCE), pp. 1–2. IEEE (2015)

    Google Scholar 

  63. Roy, S., Bose, R., Sarddar, D.: A fog-based DSS model for driving rule violation monitoring framework on the internet of things. Int. J. Adv. Sci. Technol. 82, 23–32 (2015)

    Article  Google Scholar 

  64. Joshi, B., Singh, N.K.: Mitigating dynamic dos attacks in mobile ad hoc network. In: Symposium on IEEE Colossal Data Analysis and Networking (CDAN), pp. 1–7 (2016)

    Google Scholar 

  65. Defta, L.C., Iacob, N.M.: Aodv-authentication mechanism in manet. Calitatea 17(S3), 59 (2016)

    Google Scholar 

  66. Chen, R.Y.: An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control 71, 124–136 (2017)

    Article  Google Scholar 

  67. Saqib, A., et al.: Cyber security for cyber physcial systems: a trust-based approach. J. Theor. Appl. Inf. Technol. 71(2), 144–152 (2015)

    Google Scholar 

  68. Monteiro, A., Dubey, H., Mahler, L., Yang, Q., Mankodiya, K.: Fit a fog computing device for speech teletreatments. arXiv preprint arXiv:1605.06236 (2016)

  69. Orsini, G., Bade, D., Lamersdorf, W.: Computing at the mobile edge: Designing elastic Android applications for computation offloading. In: 2015 8th IFIP Wireless and Mobile Networking Conference (WMNC), pp. 112–119. IEEE (2015)

    Google Scholar 

  70. Heuser, S., Negro, M., Pendyala, P.K., Sadeghi, A.R.: Droidauditor: forensic analysis of application-layer privilege escalation attacks on Android. Technical report, TU Darmstadt (2016)

    Google Scholar 

  71. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Malicious Android applications in the enterprise: what do they do and how do we fix it? In: 2012 IEEE 28th International Conference on Data Engineering Workshops (ICDEW), pp. 251–254. IEEE (2012)

    Google Scholar 

  72. Singh, P., Tiwari, P., Singh, S.: Analysis of malicious behavior of Android apps. Procedia Comput. Sci. 79, 215–220 (2016)

    Article  Google Scholar 

  73. Selvaraj, P., Nagarajan, V.: Migration from conventional networking to software defined networking. In: IEEE-International Conference on IoT and its Applications (ICIOT-2017). E.G.S Pillay Engineering College, Nagapattinam (2017). ISBN 978-93-84893-49-4

    Google Scholar 

  74. Wan, B., Xu, C., Mahapatra, R.P., Selvaraj, P.: Understanding the cyber-physical system in international stadiums for security in the network from cyber-attacks and adversaries using AI. Wirel. Pers. Commun. 127, 1207–1224 (2021). https://doi.org/10.1007/s11277-021-08573-2

    Article  Google Scholar 

  75. Selvaraj, P., Narayanan, L.K.: IoT enhanced smart mirror for personal and commercial applications. Int. J. Adv. Trends Comput. Sci. Eng. (IJATCSE) 9(4) (2020)

    Google Scholar 

  76. Li, G., Liu, Y., Wu, J., Lin, D., Zhao, S.: Methods of resource scheduling based on optimized fuzzy clustering in fog computing. Sensors (Basel) 19, 2122 (2019)

    Article  Google Scholar 

  77. Boveiri, H.R., Khayami, R., Elhoseny, M., Gunasekaran, M.: An efficient swarm-intelligence approach for task scheduling in cloud based internet of things applications. J. Ambient Intell. Hum. Comput. 10, 3469–3479 (2019)

    Article  Google Scholar 

  78. Bitam, S., Zeadally, S., Mellouk, A.: Fog computing job scheduling optimization based on bees swarm. Enterpr. Inform. Syst. 12, 373–397 (2018)

    Article  Google Scholar 

  79. Hoang, D., Dang, T.D.: FBRC: optimization of task scheduling in fog-based region and cloud. In: Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia, pp. 1109–1114. IEEE (2017)

    Google Scholar 

  80. Stavrinides, G.L., Karatza, H.D.: A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimed. Tools Appl. 78(17), 24639–24655 (2018). https://doi.org/10.1007/s11042-018-7051-9

    Article  Google Scholar 

  81. Sun, Y., Lin, F., Xu, H.: Multi-objective optimization of resource scheduling in Fog computing using an improved NSGA-II. Wirel. Pers. Commun. 102, 1369–1385 (2018)

    Article  Google Scholar 

  82. Wang, J., Li, D.: Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors (Basel) 19, 1023 (2019)

    Article  Google Scholar 

  83. Pham, X.Q., Man, N.D., Tri, N.D.T., Thai, N.Q., Huh, E.N.: A cost and performance-effective approach for task scheduling based on collaboration between cloud and fog computing. Int. J. Distrib. Sens. Netw. 13, 1550147717742073 (2017)

    Google Scholar 

  84. Nguyen, B.M., Binh, H.T.T., Anh, T.T., Son, D.B.: Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Appl. Sci. 9, 1730 (2019)

    Article  Google Scholar 

  85. Xu, J., Hao, Z., Zhang, R., Sun, X.: A method based on the combination of laxity and ant colony system for cloud-fog task scheduling. IEEE Access 7, 116218–116226 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Selvaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balaji, V., Selvaraj, P. (2023). A Systematic Review on Fog Computing Security Algorithms on Current IoT Applications and Solutions. In: Kottursamy, K., Bashir, A.K., Kose, U., Uthra, A. (eds) Deep Sciences for Computing and Communications. IconDeepCom 2022. Communications in Computer and Information Science, vol 1719. Springer, Cham. https://doi.org/10.1007/978-3-031-27622-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27622-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27621-7

  • Online ISBN: 978-3-031-27622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics