Skip to main content

Localization and Navigation of an Autonomous Vehicle in Case of GPS Signal Loss

  • Conference paper
  • First Online:
Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis (ACD 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 467))

Included in the following conference series:

  • 188 Accesses

Abstract

In recent years, autonomous vehicles have become an axis of academic and industrial research. Localizing these vehicles without a GPS signal represents a challenge for researchers, because the other sensors are usually less accurate, less fast and require more computation. Among localization methods, dead reckoning ones do not need prior knowledge as they are easier to implement for real time purposes. However, their biggest flaw is the accumulation of errors over time. In this work, we present an onboard localization method dedicated to autonomous vehicles for short time navigation without GPS. We developed a method with a high rate inertial-visual data fusion module that allows locating the vehicle in real-time. This method has been validated offline and tested online in a path following control loop on an experimental vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marden, S., Whitty, M.A.: Gps-free localisation and navigation of an unmanned ground vehicle for yield forecasting in a vineyard (2014)

    Google Scholar 

  2. Gui, J., Dongbing, G., Wang, S., Huosheng, H.: A review of visual inertial odometry from filtering and optimisation perspectives. Adv. Robot. 29(20), 1289–1301 (2015)

    Article  Google Scholar 

  3. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Google Scholar 

  4. Qin, T., Li, P., Shen, S.: Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)

    Google Scholar 

  5. Tanskanen, P., Naegeli, T., Pollefeys, M., Hilliges. Semi-direct ekf-based monocular visual-inertial odometry. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6073–6078 (2015)

    Google Scholar 

  6. Usenko, V., Engel, J., Stückler, J., Cremers, D.: Direct visual-inertial odometry with stereo cameras. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1885–1892 (2016)

    Google Scholar 

  7. Sun, K., Mohta, K., Pfrommer, B., Watterson, Mi., Liu, S., Mulgaonkar, Y., Taylor, C.J., Kumar, V.: Robust stereo visual inertial odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 3(2), 965–972 (2018)

    Google Scholar 

  8. He, Y., Zhao, J., Guo, Y., He, W., Yuan, K.: Pl-vio: tightly-coupled monocular visual-inertial odometry using point and line features. Sensors 18(4) (2018)

    Google Scholar 

  9. Al Bitar, N., Gavrilov, A.I.: Comparative analysis of fusion algorithms in a loosely-coupled integrated navigation system on the basis of real data processing. Gyroscopy and Navigat. 10(4), 231–244 (2019)

    Google Scholar 

  10. Delmerico, J., Scaramuzza, D.: A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2502–2509 (2018)

    Google Scholar 

  11. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration for real-time visual-inertial odometry. IEEE TRO 33(1), 1–21 (2017)

    Google Scholar 

  12. Huai, Z., Huang, G.: Robocentric visual-inertial odometry. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6319–6326 (2018)

    Google Scholar 

  13. Li, Mingyang, Mourikis, Anastasios I.: High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 32(6), 690–711 (2013)

    Article  Google Scholar 

  14. Ma, F., Shi, J., Yang, Y., Li, J., Dai, K.: Ack-msckf: Tightly-coupled ackermann multi-state constraint kalman filter for autonomous vehicle localization. Sensors 19(21) (2019)

    Google Scholar 

  15. Boudali, M.T., Orjuela, R., Basset, M.: A comparison of two guidance strategies for autonomous vehicles. IFAC-PapersOnLine 50, 12539–12544 (2017)

    Google Scholar 

  16. Laghmara, H., Boudali, M.T., Laurain, T., Ledy, J., Orjuela, R., Lauffenburger, J.P., Basset, M.: Obstacle avoidance, path planning and control for autonomous vehicles. In: 2019 IEEE Intelligent Vehicles Symposium (2019)

    Google Scholar 

  17. Rebert, M., Monnin, D., Bazeille, S., Cudel, C: Parallax beam: a vision-based motion estimation method robust to nearly planar scenes. JEI 28(2) (2019)

    Google Scholar 

  18. Bazeille, S., Josso-Laurain, T., Ledy, J., Rebert, M., Al Assaad, M., Orjuela, R.: Characterization of the impact of visual odometry drift on the control of an autonomous vehicle. In: 2020 IEEE IV, pp. 2037–2043 (2020)

    Google Scholar 

  19. Titterton, D., Weston, J.L., Weston, J.: Strapdown Inertial Navigation Technology, vol. 17. IET (2004)

    Google Scholar 

  20. Vieira, D., Orjuela, R., Spisser, M., Basset, M.: Positioning and attitude determination for precision agriculture robots based on IMU and two RTK GPSs sensor fusion. In: 7th IFAC Conference Sensing, Control and Automation for Agriculture (2022)

    Google Scholar 

  21. Sánchez, J., Monzón, N., Salgado De La Nuez, A.: An Analysis and Implementation of the Harris Corner Detector, vol. 8 (2018)

    Google Scholar 

Download references

Acknowledgements

Thanks to ANR for financing the Evi-Deep support project. Thanks to Sébastien Jung who worked on the implementation of IO and VO during his internship in 2021. Thanks to the automobile museum that made the experimentation’s circuit available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Oubouabdellah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oubouabdellah, S.N., Bazeille, S., Mourllion, B., Ledy, J. (2023). Localization and Navigation of an Autonomous Vehicle in Case of GPS Signal Loss. In: Theilliol, D., Korbicz, J., Kacprzyk, J. (eds) Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis. ACD 2022. Studies in Systems, Decision and Control, vol 467. Springer, Cham. https://doi.org/10.1007/978-3-031-27540-1_19

Download citation

Publish with us

Policies and ethics