Skip to main content

Animal Models in Neuroscience: A Focus on Stress

  • Chapter
  • First Online:
The Palgrave Handbook of Occupational Stress
  • 261 Accesses

Abstract

Stress has been studied since the pioneering work of Selye in the mid-twentieth century (Selye, The stress of life. McGraw Hill, 1976). Thus, numerous animal models have been developed by basic research scientists, and they can be applied in acute or chronic stress studies. In addition, some are readily translatable to humans. Here, rodent models are reviewed, and their characteristics described. The effects of stress on higher-order brain functions such as mood and cognitive function are also described. In addition, since recent studies show that responses to stress by females can be different than males, sex as a biological variable is discussed, especially in relation to treatment of stress-related disorders. Chronic stressors generally impair performance of male rodents on commonly used memory tasks including radial arm maze, water maze, and object placement. In contrast, female rodents are either unaffected or show enhanced performance on the same tasks following the same stress. Anxiety increases in both sexes following chronic stress. Depression increases in males following stress, but effects in females are unclear since little rodent research on this topic has included females, despite the fact that human females have higher rates of depression than males. Morphology of neurons and activity of neurotransmitters are altered following stress and, like the behaviors, the changes are sexually dimorphic. Information from most animal models is translatable to humans and can be utilized to develop novel/more effective therapies for disorders which are precipitated by or related to stress such as anxiety, depression, post-traumatic stress disorder, and cognitive loss. With the World Health Organization naming stress the health epidemic of the twenty-first century, it is even more imperative to understand the neural underpinnings of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CNS: central nervous system.

  2. 2.

    PFC: prefrontal cortex.

References

  • Anisman, H., Hayley, S., Kelly, O., Borowski, T., & Merali, Z. (2001). Pshchogenic, neurogenic and system stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behavioral Neuroscience, 115, 443–454.

    Article  PubMed  Google Scholar 

  • Aschbacher, K., Mellon, S. H., Wolkowitz, O. M., Henn-Haase, C., Yehuda, R., Flory, J. D., Bierer, L. M., Abu-Amara, D., Marmar, C. R., & Mueller, S. G. (2018). Posttraumatic stress disorder, symptoms, and white matter abnormalities among combat-exposed veterans. Brain Imaging and Behavior, 12, 989–999.

    Article  PubMed  Google Scholar 

  • Avital, A., & Richter-Levin, G. (2005). Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. The International Journal of Neuropsychopharmacology, 8, 163–173.

    Article  PubMed  Google Scholar 

  • Avital, A., Ram, E., Maayan, R., Weizman, A., & Richter-Levin, G. (2005). Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Research Bulletin, 68, 419–424.

    Article  PubMed  Google Scholar 

  • Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35, 303–319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck, K. D., & Luine, V. N. (1999). Food deprivation modulates chronic stress effects on object recognition in male rats: Role of monoamines and amino acids. Brain Research, 830, 56–71.

    Article  PubMed  Google Scholar 

  • Beck, K. D., & Luine, V. N. (2002). Sex differences in behavioral and neurochemical profiles after chronic stress: Role of housing conditions. Physiology and Behavior, 75, 661–73.

    Google Scholar 

  • Bowman, R. E., Zrull, M. C., & Luine, V. N. (2001). Chronic restraint stress enhances radial arm maze performance in female rats. Brain Research, 904, 279–289.

    Article  PubMed  Google Scholar 

  • Bowman, R., MacLusky, N. J., Sarmiento, Y., Frankfurt, M., Gordon, M., & Luine, V. N. (2004). Sexually dimorphic effects of prenatal stress on cognition, hormonal responses and central neurotransmitters. Endocrinology, 145, 3778–3787.

    Article  PubMed  Google Scholar 

  • Bowman, R. E., Micik, R., Gautreaux, C., Fernandez, L., & Luine, V. N. (2009). Sex dependent changes in anxiety, memory, and monoamines following one week of stress. Physiology & Behavior, 97, 21–29.

    Article  Google Scholar 

  • Buenaventure, J, Khanddaker, H., & Luine, V. (Unpublished) Chronic stress effects on anxiety, depression and cognition in male and female rats.

    Google Scholar 

  • Burgado, L., Harrell, C. S., Eacret, D., Reddy, R., Barnum, C. J., Tansey, M. G., Miller, A. H., Wang, H., & Neigh, G. N. (2014). Two weeks of predatory stress induces anxiety like behavior with co-morbid depressive-like behavior in adult male mice. Behavioural Brain Research, 275, 120–125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carnevali, L., Mastorci, F., Graiani, G., Razzoli, M., Trombini, M., Pico-Alfonso, M. A., Arban, R., Grippo, A. J., Quaini, F., & Sgoifo, A. (2012). Social defeat and isolation induce clear signs of a depression-like state, but modest cardiac alterations in wild-type rats. Physiology & Behavior, 106, 142–150.

    Article  Google Scholar 

  • Chapman, D. P., Whitfield, C. L., Felitti, V. J., Dube, S. R., Edwards, V. J., & Anda, R. F. (2004). Adverse childhood experiences and the risk of depressive disorders in adulthood. Journal of Affective Disorders, 82(2), 217–225.

    Article  PubMed  Google Scholar 

  • Conrad, C. D., Grote, K. D., Hobbs, R. J., & Ferayorni, A. (2003). Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiology of Learning and Memory, 79, 32–40.

    Article  PubMed  Google Scholar 

  • Dalla, C., Pitychoutis, M., Kokras, N., & Papadopoulou-Daifoti, Z. (2010). Sex differences in animal models of depression and antidepressant response. Basic & Clinical Pharmacology & Toxicology, 106, 226–233.

    Article  Google Scholar 

  • Fauquet-Alekhine, Ph., & Rouillac, L. (2016). The square of perceived action model as a tool for identification, prevention and treatment of factors deteriorating mental health at work. Journal of Mental Disorders and Treatment, 2(3), 1–13, paper #1000126.

    Google Scholar 

  • Galea, L. A., McEwen, B. S., Tanapat, P., Deak, T., Spencer, R. L., & Dhabhar, F. S. (1997). Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience, 81, 689–697.

    Article  PubMed  Google Scholar 

  • Gomes, F. V., & Grace, A. A. (2017). Prefrontal cortex dysfunction increases susceptibility of schizophrenia-like changes induced by adolescent stress exposure. Schizophrenia Bulletin, 43, 592–600.

    Article  PubMed  Google Scholar 

  • Gomez, J. L., & Luine, V. (2014). Female rats exposed to stress and alcohol show impaired memory and increased depressive-like behaviors. Physiology and Behavior, 123, 47–54.

    Article  PubMed  Google Scholar 

  • Green, M. R., & McCormick, C. M. (2013). Effects of stressors in adolescence on learning and memory in rodent models. Hormones and Behavior, 64, 364–379.

    Article  PubMed  Google Scholar 

  • Gronli, J., Murison, R., Fiske, E., Bjorvatn, B., Sorensen, E., Portas, M., & Ursin, R. (2005). Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiology & Behavior, 84, 571–577.

    Article  Google Scholar 

  • Guide for The Care and Use of Laboratory Animals, Eighth Edition. (n.d.). Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Academies of Science, USA. National Research Council of the National Academies, The National Academies Press, Washington, D.C., USA. www.nap.edu or National Institutions of Health Publication 80–23, www.nih.gov.

  • Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences, 20, 78–84.

    Article  PubMed  Google Scholar 

  • Hodes, G. E., & Epperson, C. N. (2019). Sex differences in vulnerability and resilience to stress across the life span. Biological Psychiatry, 86, 421–432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodes, G. E., Pfau, M. L., Purushothaman, I., Cahn, H. F., Golden, S. A., Histoffel, D. J., & Russo, S. J. (2015). Sex differences in nucleus accumbens transriptome profiles associated with susceptibility versus resilience to subchronic variable stress. The Journal of Neuroscience, 35, 16362–16376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holder, M. K., & Blaustein, J. D. (2014). Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Frontiers in Neuroendocrinology, 35, 89–110.

    Article  PubMed  Google Scholar 

  • Isgor, C., Kabbaj, M., Akil, H., & Watson, S. J. (2004). Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus, 14, 636–648.

    Article  PubMed  Google Scholar 

  • Klinger, K., Gomes, F. V., Rincon-Cortes, M., & Grace, A. A. (2019). Female rats are resistant to the long-last neurobehavioral changes induced by adolescent stress exposure. European Neuropsychopharmacology, 10, 1127–1137.

    Article  Google Scholar 

  • Luine, V. N., & Gomez, J. L. (2015). Sex differences in rodent cognitive processing and responses to chronic stress. In R. Shansky (Ed.), Sex differences in the central nervous system (pp. 365–404). Elsevier.

    Google Scholar 

  • Luine, V., Villegas, M., Martinez, C., & McEwen, B. S. (1994). Repeated stress causes reversible impairments of spatial memory performance. Brain Research, 639, 167–170.

    Article  PubMed  Google Scholar 

  • Luine, V., Gomez, J., Beck, K. D., & Bowman, R. E. (2017a). Sex differences in chronic stress effects on cognition in rodents. Pharmacology, Biochemistry and Behavior, 152, 13–19.

    Article  PubMed  Google Scholar 

  • Luine, V. N., Bowman, R. E., & Serrano, P. A. (2017b). Sex differences in acute stress effects on spatial memory and hippocampal synaptic neurochemicals. In P. Fauquet-Alekine (Ed.), Understanding stress at work (pp. 52–56). http://hayka-kultura.org/larsen.html

  • Luine, V., Bowman, R., & Serrano, P. (2018). Sex differences in cognitive responses to stress in rodents. In A. Ennaceur & M. A. de Souza Silva (Eds.), Handbook of research on object novelty recognition (pp. 531–540). Elsevier/Academic Press.

    Chapter  Google Scholar 

  • McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (2016). In pursuit of resilience: stress, epigenetics, and brain plasticity. Annals of the New York Academy of Sciences, 1373, 56–64.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Mechanisms leading to disease. Archives of Internal Medicine, 153, 2093–2101.

    Article  PubMed  Google Scholar 

  • McIntyre, D. A., Kent, P., Hayley, S., Merali, Z., & Anisman, H. (1999). Influence of psychogenic and neurogenic stressors on neuroendocrine and central monoamine activity in fast and slow kindling rats. Brain Research, 840, 63–74.

    Article  Google Scholar 

  • McLaughlin, K. J., Wilson, J. O., Harman, J., Wright, R. L., Wieczorek, L., Gomez, J., Korol, D. L., & Conrad, D. (2009). Chronic 17β-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized female rats: Possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus, 20, 768–786.

    Google Scholar 

  • Meyers, T. (2018). Stress: The health epidemic of the 21st century. https://thriveglobal.com/stories/stress-the-health-epidemic-of-the-21st-century/

  • Nasca, C., Menard, C., Hodes, G., Bigio, B., Pena, C., Lorsch, Z., Zelli, D., Ferris, A., Kana, V., Purushothaman, I., Dobbin, J., Nassim, M., DeAngelis, P., Merad, M., Rasgon, N., Meaney, M., Nestler, E. J., McEwen, B. S., & Russo, S. J. (2019). Multidimensional predictors of susceptibility and resilience to social defeat stress. Biological Psychiatry, 86, 483–491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, R. (2000). An introduction to behavioral endocrinology, chapter on stress. (pp. 557–592). Sinauer Associates.

    Google Scholar 

  • Noschang, C. G., Pettenuzzo, L. F., von Pozzer, T. E., Andreazza, A. C., Krolow, R., Fachin, A., Avila, M. C., Arcego, D., Crema, L. M., Diehl, L. A., Gonçalvez, C. A., Vendite, D., & Dalmaz, C. (2009). Sex-specific differences on caffeine consumption and chronic stress-induced anxiety-like behavior and DNA breaks in the hippocampus. Pharmacology, Biochemistry, and Behavior, 94, 63–69.

    Article  PubMed  Google Scholar 

  • Ortiz, J. B., & Conrad, C. D. (2018). The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Frontiers in Neuroendocrinology, 49, 114–123.

    Article  PubMed  Google Scholar 

  • Reich, C. G., Taylor, M. E., & McCarthy, M. M. (2009). Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behavioural Brain Research, 203, 264–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivier, C. (1999). Gender, sex steroids, corticotropin-releasing factor, nitric oxide, and the HPA response to stress. Pharmacology, Biochemistry, and Behavior, 64, 739–751.

    Article  PubMed  Google Scholar 

  • Rowson, S. A., Bekhbat, M., Kelly, S. D., Binder, E. B., Hyer, M. M., Shaw, G., Bent, M. A., Hodes, G., Tharp, G., Weinshenker, D., Qin, Z., & Neigh, G. N. (2019). Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. Neuropsychopharmacology, 44, 1207–1215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selye, H. (1976). The stress of life. McGraw Hill.

    Google Scholar 

  • Sunanda, R., Rao, B. S., & Raju, T. R. (2000). Restraint stress-induced alterations in the levels of biogenic amines, amino acids and AchE activity in the hippocampus. Neurochemical Research, 25, 1547–1552.

    Article  PubMed  Google Scholar 

  • Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341–345.

    Article  PubMed  Google Scholar 

  • Wei, J., Yuen, E. Y., Liu, W., Li, X., Zhong, P., Karatsoreos, I. N., McEwen, B. S., & Yan, Z. (2014). Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Molecular Psychiatry, 19, 588–598.

    Article  PubMed  Google Scholar 

  • Weinstock, M. (2016). Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress, 6, 3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westenbroek, C., Den Boer, J. A., Veenhuis, M., & Ter Horst, G. J. (2004). Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Research Bulletin, 64, 303–308.

    Article  PubMed  Google Scholar 

  • Wolf, O. T., Atsak, P., de Quervain, D. J., Roozendaal, B., & Wingenfeld, K. (2016). Stress and memory: A selective review on recent developments in the understanding of stress hormone effects on memory and their clinical relevance. Journal of Neuroendocrinology, 28. https://doi.org/10.1111/jne.12353. Review.

  • Wood, G. E., Beylin, A. V., & Shors, T. (2001). The contribution of adrenal and reproductive hormones to the opposing effects of stress on trace conditioning in males versus females. Behavioral Neuroscience, 115, 175–187.

    Article  PubMed  Google Scholar 

  • Yehuda, R., Morris, A., Labinsky, E., Zemelman, S., & Schmeidler, J. (2007). Ten-year follow-up study of cortisol levels in aging Holocaust survivors with and without PTSD. Journal of Traumatic Stress, 20, 757–761.

    Article  PubMed  Google Scholar 

  • Zanca, R. M., Sanay, S., Avila, J. A., Rodriguez, E., Shair, H. N., & Serrano, P. A. (2018). Contextual fear memory modulates PSD95 phosphorylation, AMPAr subunits, PKMζ and PI3K differentially between adult and juvenile rats. Neurobiol Stress, 10, 100139. https://doi.org/10.1016/j.ynstr.2018.11.002. eCollection 2019 Feb.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Experimental work from the author’s laboratory discussed in this review was supported by The City University of New York, PSC-CUNY, NIH grant RR003037 from the National Center for Research Resources (HC); and Training Grants GM060665 (VL) and NS080686 (HC). Dr. Maya Frankfurt assisted in drawing Fig. 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Luine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luine, V. (2023). Animal Models in Neuroscience: A Focus on Stress. In: Fauquet-Alekhine, P., Erskine, J. (eds) The Palgrave Handbook of Occupational Stress. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-27349-0_4

Download citation

Publish with us

Policies and ethics