Skip to main content

Cooperative Coevolutionary NSGA-II with Linkage Measurement Minimization for Large-Scale Multi-objective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13970))

Included in the following conference series:

  • 840 Accesses

Abstract

In this paper, we propose a novel decomposition method based on cooperative coevolution (CC) to deal with large-scale multi-objective optimization problems (LSMOPs) named Linkage Measurement Minimization (LMM), and after decomposition, NSGA-II is employed to optimize the subcomponents separately. CC is a mature and efficient framework for solving large-scale optimization problems (LSOPs), which decomposes LSOPs into multiple nonseparable subcomponents and solves them alternately based on a divide-and-conquer strategy. The essence of the successful implementation of the CC framework is the design of decomposition methods. However, in LSMOPs, variables in different objective functions may have different interactions, and the design of a proper decomposition method for LSMOPs is more difficult than for single objective optimization problems. Our proposed LMM can identify the relatively strong interactions and search the better decomposition iteratively. We evaluate our proposal on 21 benchmark functions of 500-D and 1000-D, and numerical experiments show that our proposal is quite competitive with the current popular decomposition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio, L.M., Coello, C.A.C.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2758–2765. IEEE (2013)

    Google Scholar 

  2. van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004). https://doi.org/10.1109/TEVC.2004.826069

    Article  Google Scholar 

  3. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)

    Article  Google Scholar 

  4. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018). https://doi.org/10.1137/16M1080173

    Article  MathSciNet  MATH  Google Scholar 

  5. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. University of Michigan, Ann Arbor (1975)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Gould, N., Orban, D., Toint, P.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005). https://doi.org/10.1017/S0962492904000248

    Article  MathSciNet  MATH  Google Scholar 

  8. Izumiya, K., Munetomo, M.: Multi-objective evolutionary optimization based on decomposition with linkage identification considering monotonicity. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 905–912 (2017). https://doi.org/10.1109/CEC.2017.7969405

  9. Jazzbin, E.: Geatpy: the genetic and evolutionary algorithm toolbox with high performance in python (2020)

    Google Scholar 

  10. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2015)

    Article  Google Scholar 

  11. Martinsson, P.G., Tropp, J.A.: Randomized numerical linear algebra: foundations and algorithms. Acta Numer. 29, 403–572 (2020). https://doi.org/10.1017/S0962492920000021

    Article  MathSciNet  Google Scholar 

  12. Omidvar, M.N., Li, X., Yao, X.: A review of population-based metaheuristics for large-scale black-box global optimization: Part A. In: IEEE Transactions on Evolutionary Computation, pp. 1–1 (2021). https://doi.org/10.1109/TEVC.2021.3130838

  13. Omidvar, M.N., Li, X., Yao, X.: A review of population-based metaheuristics for large-scale black-box global optimization: Part B. In: IEEE Transactions on Evolutionary Computation, pp. 1 (2021). https://doi.org/10.1109/TEVC.2021.3130835

  14. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  15. Sander, F., Zille, H., Mostaghim, S.: Transfer strategies from single- to multi-objective grouping mechanisms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 729–736. GECCO’18, Association for Computing Machinery (2018). https://doi.org/10.1145/3205455.3205491

  16. Song, A., Yang, Q., Chen, W.N., Zhang, J.: A random-based dynamic grouping strategy for large scale multi-objective optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 468–475. IEEE (2016)

    Google Scholar 

  17. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1663–1670 (2008). https://doi.org/10.1109/CEC.2008.4631014

  19. Zhong, R., Munetomo, M.: Random population-based decomposition method by linkage identification with non-linearity minimization on graph. In: 2022-MPS-139, pp. 1–4 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K11967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, R., Munetomo, M. (2023). Cooperative Coevolutionary NSGA-II with Linkage Measurement Minimization for Large-Scale Multi-objective Optimization. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics