Skip to main content

Adventures with Datalog: Walking the Thin Line Between Theory and Practice

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13796))

  • 500 Accesses

Abstract

This keynote paper features a concise introduction to Datalog, which is followed by an overview of some theoretical results about the complexity and expressive power of a number of Datalog variants. This will be interleaved with a tale of four Datalog-related companies co-founded by the author: DLVSystem, Lixto, Wrapidity, and DeepReason.ai.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As \(\gamma \) is of the size of a single database atom only, it may equally be part of the input, without any effect whatsoever on the complexity.

  2. 2.

    Vardi actually made this statement for a related setting.

  3. 3.

    https://www.dlvsystem.it/dlvsite/ retrieved 24 July 2022.

  4. 4.

    https://mergr.com/mckinsey-acquires-lixto-software, accessed 25 July 2022.

  5. 5.

    https://cordis.europa.eu/project/id/246858 accessed 28 July 2022.

  6. 6.

    https://www.meltwater.com/en/about/press-releases/meltwater-acquires-oxford-university-data-extraction-spinout-wrapidity accessed 28 July 2022.

  7. 7.

    https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M025268/1  accessed 20 July 2022.

  8. 8.

    See www.owler.com  and https://en.wikipedia.org/wiki/Owler, both accessed 29 July 2022.

  9. 9.

    https://www.meltwater.com/en/about/press-releases/meltwater-acquires-deepreason-ai.

References

  1. Adrian, W.T., et al.: The ASP system DLV: advancements and applications. KI-Künstliche Intelligenz 32(2), 177–179 (2018)

    Article  Google Scholar 

  2. Afrati, F., Papadimitriou, C., Papageorgiou, G., Roussou, A., Sagiv, Y., Ullman, J.D.: Convergence of sideways query evaluation. In: Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 24–30 (1985)

    Google Scholar 

  3. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Elsevier (1988)

    Google Scholar 

  4. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI, vol. 5, pp. 364–369 (2005)

    Google Scholar 

  5. Baget, J.F., Leclère, M., Mugnier, M.L.: Walking the decidability line for rules with existential variables. KR 10, 466–476 (2010)

    MATH  Google Scholar 

  6. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules with existential variables. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  7. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to implement logic programs. In: Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 1–15 (1985)

    Google Scholar 

  8. Baumgartner, R., Flesca, S., Gottlob, G.: The Elog web extraction language. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 548–560. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8_38

    Chapter  Google Scholar 

  9. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with lixto. In: VLDB - International Conference on Very Large Data Bases, pp. 119–128. Morgan Kaufmann (2001)

    Google Scholar 

  10. Baumgartner, R., Gottlob, G., Herzog, M.: Scalable web data extraction for online market intelligence. Proc. VLDB Endowment (PVLDB) 2(2), 1512–1523 (2009)

    Article  Google Scholar 

  11. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10843-2_7

    Chapter  Google Scholar 

  12. Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: a modern architecture for automated reasoning with large knowledge graphs. Inf. Syst. 105, 101528 (2020)

    Article  Google Scholar 

  13. Bellomarini, L., Blasi, L., Laurendi, R., Sallinger, E.: Financial data exchange with statistical confidentiality: a reasoning-based approach. In: Velegrakis, Y., Zeinalipour-Yazti, D., Chrysanthis, P.K., Guerra, F. (eds.) Proceedings of the 24th International Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, 23–26 March 2021, pp. 558–569. OpenProceedings.org (2021). https://doi.org/10.5441/002/edbt.2021.66

  14. Bellomarini, L., et al.: Data science with Vadalog: knowledge graphs with machine learning and reasoning in practice. Futur. Gener. Comput. Syst. 129, 407–422 (2022)

    Article  Google Scholar 

  15. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and knowledge graphs (invited paper). In: IJCAI - International Conference on Artificial Intelligence, pp. 2–10. ijcai.org (2017)

    Google Scholar 

  16. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based reasoning for knowledge graphs. Proc. VLDB Endowment (PVLDB) 11(9), 975–987 (2018)

    Article  Google Scholar 

  17. Berger, G., Gottlob, G., Pieris, A., Sallinger, E.: The space-efficient core of Vadalog. In: PODS:ACM Symposium on Principles of Database Systems, pp. 270–284. ACM (2019)

    Google Scholar 

  18. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

    Article  Google Scholar 

  20. Calı, A., Kifer, M.: Containment of conjunctive object meta-queries. In: Proceedings of VLDB, pp. 942–952. Citeseer (2006)

    Google Scholar 

  21. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the dl-lite family. J. Autom. Reason. 39(3), 385–429 (2007). https://doi.org/10.1007/s10817-007-9078-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

    Article  Google Scholar 

  23. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases (Surveys in Computer Science). Springer, Cham (1990)

    Book  Google Scholar 

  24. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and their inference problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 342–354 (1981)

    Google Scholar 

  25. Clearman, J., et al.: Feature engineering and explainability with Vadalog: a recommender systems application. In: Datalog, pp. 39–43 (2019)

    Google Scholar 

  26. Dantsin, E., Gottlob, T.E.G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  27. Eiter, T., Gottlob, G.: Complexity aspects of various semantics for disjunctive databases. In: PODS - ACM Symposium on Principles of Database Systems, pp. 158–167. ACM Press (1993)

    Google Scholar 

  28. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application to nonmonotonic logics. In: ILPS - International Symposium on Logic Programming, pp. 266–278. MIT Press (1993)

    Google Scholar 

  29. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995). https://doi.org/10.1007/BF01536399

    Article  MathSciNet  MATH  Google Scholar 

  30. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. (TODS) 22(3), 364–418 (1997)

    Article  Google Scholar 

  31. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP/SLP, pp. 1070–1080 (1988)

    Google Scholar 

  33. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The lixto data extraction project - back and forth between theory and practice (invited paper). In: PODS - ACM Symposium on Principles of Database Systems, pp. 1–12. ACM (2004)

    Google Scholar 

  34. Gottlob, G., Koch, C.: Monadic queries over tree-structured data. In: LICS - ACM/IEEE Symposium on Logic in Computer Science, pp. 189–202. IEEE Computer Society (2002)

    Google Scholar 

  35. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for web information extraction. J. ACM (JACM) 51(1), 74–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures of bounded treewidth. ACM Trans. Comput. Logic (TOCL) 12(1), 1–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime: rules to the rescue. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  38. Gottlob, G., Pieris, A., Simkus, M.: The impact of active domain predicates on guarded existential rules. Fundam. Informaticae 159(1–2), 123–146 (2018). https://doi.org/10.3233/FI-2018-1660

    Article  MathSciNet  MATH  Google Scholar 

  39. Gottlob, G., Rudolph, S., Simkus, M.: Expressiveness of guarded existential rule languages. In: Hull, R., Grohe, M. (eds.) Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2014, Snowbird, UT, USA, 22–27 June 2014, pp. 27–38. ACM (2014). https://doi.org/10.1145/2594538.2594556

  40. Grädel, E.: Capturing complexity classes by fragments of second-order logic. Theoret. Comput. Sci. 101(1), 35–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Immerman, N.: Relational queries computable in polynomial time (extended abstract). In: Proceedings of STOC 1982, San Francisco, CA, USA, 5–7 May 1982, pp. 147–152. ACM (1982). https://doi.org/10.1145/800070.802187

  42. Johnson, D.S., Klug, A.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  44. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. (TODS) 4(4), 455–469 (1979)

    Article  Google Scholar 

  45. Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 472–511. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45628-7_18

    Chapter  MATH  Google Scholar 

  46. Leone, N., et al.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic (TOCL) 7(3), 499–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Przymusinski, T.C.: Stable semantics for disjunctive programs. N. Gener. Comput. 9(3), 401–424 (1991). https://doi.org/10.1007/BF03037171

    Article  MATH  Google Scholar 

  48. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM (JACM) 38(3), 619–649 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of STOC, pp. 137–146 (1982)

    Google Scholar 

Download references

Acknowledgment

Georg Gottlob is a Royal Society Research Professor and acknowledges support by the Royal Society in this role through the “RAISON DATA” project (Reference No. RP\(\backslash \)R1\(\backslash \)201074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Gottlob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gottlob, G. (2023). Adventures with Datalog: Walking the Thin Line Between Theory and Practice. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics