Skip to main content

Next Generation Biorepository Informatics: Supporting Genomics, Imaging, and Innovations in Spatial Biology

  • Chapter
  • First Online:
Clinical Research Informatics

Part of the book series: Health Informatics ((HI))

  • 638 Accesses

Abstract

The past three decades catapulted biorepositories and their informatics innovation to the forefront of Precision Medicine and particularly Precision Oncology. The National Institute of Health (NIH)‘s programs, particularly the All of Us Research Program and the Biden Cancer Moonshot initiatives, have been key enablers. The importance of biospecimens and their derivatives, particularly genomic sequencing and expression data coupled with deep clinical annotation from electronic health records, are fueling a new era of deep biologic interrogation of both the cell biology of human tissues and their diseased counterparts. Clear evidence of this is the Chan-Zuckerberg BioHub (CZ BioHub), the Human Biomolecular Atlas (HuBMAP), the Human Tumor Atlas Network (HTAN), the Cellular Senescence Network (SenNet), and international initiatives such as LifeTime. Biorepositories that support spatial biology and cellular microenvironment imaging efforts are fueling deeper understanding of the host microenvironment and how Precision Medicine/Oncology can lead to more effective therapies. The tools of the next-generation biorepository include single cell genomics, whole-slide imaging, and multiplexed analyses to understand cell-cell messaging. Thus, “next-gen” tools are positioned to advance a deeper understanding of therapies that can be used to exploit cellular and molecular interactions within disease tissues. Biorepositories like the National Mesothelioma Virtual Bank (NMVB) are striving to provide an example of what a traditional biorepository can do to become a “Next-Generation” biorepository that not only provides clinical samples with extensive clinical annotations but also enables access to genomic, imaging, and informatics data and supports experimental innovation. This chapter hopes to establish a vision for biorepository informatics fueled by innovative approaches that enable efficient, cost-effective, and sustainable models for advancing biomedical discovery and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becich MJ. The role of the pathologist as tissue refiner and data miner: the impact of functional genomics on the modern pathology laboratory and the critical roles of pathology informatics and bioinformatics. Mol Diagn. 2000;5(4):287–99.

    Article  CAS  PubMed  Google Scholar 

  2. Friedman CP, Altman RB, Kohane IS, McCormick KA, Miller PL, Ozbolt JG, et al. Training the next generation of informaticians: the impact of “BISTI” and bioinformatics—a report from the American College of Medical Informatics. J Am Med Inform Assoc. 2004;11(3):167–72.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubin JC, Silverstein JC, Friedman CP, Kush RD, Anderson WH, Lichter AS, et al. Transforming the future of health together: the learning health systems consensus action plan. Learn Health Syst. 2018;2(3):e10055.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amin W, Singh H, Pople AK, Winters S, Dhir R, Parwani AV, et al. A decade of experience in the development and implementation of tissue banking informatics tools for intra and inter-institutional translational research. J Pathol Inform. 2010:1.

    Google Scholar 

  6. Melamed J, Datta MW, Becich MJ, Orenstein JM, Dhir R, Silver S, et al. The cooperative prostate cancer tissue resource: a specimen and data resource for cancer researchers. Clin Cancer Res. 2004;10(14):4614–21.

    Article  PubMed  Google Scholar 

  7. Patel AA, Gilbertson JR, Parwani AV, Dhir R, Datta MW, Gupta R, et al. An informatics model for tissue banks—lessons learned from the cooperative prostate cancer tissue resource. BMC Cancer. 2006;6:120.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piwowar HA, Becich MJ, Bilofsky H, Crowley RS, ca BIGDS, Intellectual Capital W. Towards a data sharing culture: recommendations for leadership from academic health centers. PLoS Med. 2008;5(9):e183.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jacobson RS, Becich MJ, Bollag RJ, Chavan G, Corrigan J, Dhir R, et al. A federated network for translational cancer research using clinical data and biospecimens. Cancer Res. 2015;75(24):5194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohanty SK, Parwani AV, Crowley RS, Winters S, Becich MJ. The importance of pathology informatics in translational research. Adv Anat Pathol. 2007;14(5):320–2.

    Article  PubMed  Google Scholar 

  11. Drake TA, Braun J, Marchevsky A, Kohane IS, Fletcher C, Chueh H, et al. A system for sharing routine surgical pathology specimens across institutions: the Shared Pathology Informatics Network. Hum Pathol. 2007;38(8):1212–25.

    Article  PubMed  Google Scholar 

  12. Amin W, Tsui FR, Borromeo C, Chuang CH, Espino JU, Ford D, et al. PaTH: towards a learning health system in the Mid-Atlantic region. J Am Med Inform Assoc. 2014;21(4):633–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bernstam EV, Hersh WR, Johnson SB, Chute CG, Nguyen H, Sim I, et al. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs. Acad Med. 2009;84(7):964–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park A. Biobanks: 10 Ideas Changing the World Right Now. Time Magazine. 2009;173:8. http://content.time.com/time/specials/packages/article/0,28804,1884779_1884782_1884766,00.html. Accessed 13 Aug 2022.

  15. Varmus H. The new era in cancer research. Science. 2006;312(5777):1162–5.

    Article  CAS  PubMed  Google Scholar 

  16. Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J. 2009 Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res. 2009;69(17):6770–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eiseman E, Bloom G, Brower J, Clancy N, Olmsted SS. Case studies of existing human tissue repositories: “best practices” for a biospecimen resource for the genomic and proteomic era: Rand Corporation; 2003.

    Google Scholar 

  18. Spinney L. UK launches tumor bank to match maligned Biobank. Nat Med. 2003;9(5):491.

    Article  CAS  PubMed  Google Scholar 

  19. Jeong CW, Suh J, Yuk HD, Tae BS, Kim M, Keam B, et al. Establishment of the Seoul National University Prospectively Enrolled Registry for Genitourinary Cancer (SUPER-GUC): A prospective, multidisciplinary, bio-bank linked cohort and research platform. Investig Clin Urol. 2019;60(4):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barbour V. UK Biobank: a project in search of a protocol? Lancet. 2003;361(9370):1734–8.

    Article  PubMed  Google Scholar 

  21. Yin P, Jiang CQ, Cheng KK, Lam TH, Lam KH, Miller MR, et al. Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. Lancet. 2007;370(9589):751–7.

    Article  CAS  PubMed  Google Scholar 

  22. Esgueva R, Park K, Kim R, Kitabayashi N, Barbieri CE, Dorsey PJ Jr, et al. Next-generation prostate cancer biobanking: toward a processing protocol amenable for the international cancer genome consortium. Diagn Mol Pathol. 2012;21(2):61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amin W, Parwani AV, Melamed J, Flores R, Pennathur A, Valdivieso F, et al. National mesothelioma virtual bank: a platform for collaborative research and mesothelioma biobanking resource to support translational research. Lung Cancer Int. 2013;2013:765748.

    Article  PubMed  PubMed Central  Google Scholar 

  24. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature. 2019;574(7777):187–92.

    Google Scholar 

  25. SenNet. The Cellular Senescence Network. 2022. https://sennetconsortium.org/. Accessed 4 Sept 2022.

  26. Louis DN, Feldman M, Carter AB, Dighe AS, Pfeifer JD, Bry L, et al. Computational pathology: a path ahead. Arch Pathol Lab Med. 2016;140(1):41–50.

    Article  PubMed  Google Scholar 

  27. Louis DN, Gerber GK, Baron JM, Bry L, Dighe AS, Getz G, et al. Computational pathology: an emerging definition. Arch Pathol Lab Med. 2014;138(9):1133–8.

    Article  PubMed  Google Scholar 

  28. Ferreira R, Moon B, Humphries J, Sussman A, Saltz J, Miller R, et al. The virtual microscope. Proc AMIA Annu Fall Symp. 1997:449–53.

    Google Scholar 

  29. Afework A, Beynon MD, Bustamante F, Cho S, Demarzo A, Ferreira R, et al. Digital dynamic telepathology—The virtual microscope. Proc AMIA Symp. 1998:912–6.

    Google Scholar 

  30. Park S, Parwani AV, Aller RD, Banach L, Becich MJ, Borkenfeld S, et al. The history of pathology informatics: a global perspective. J Pathol Inform. 2013;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2013;137(12):1710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Amin W, Srinivasan M, Song SY, Parwani AV, Becich MJ. Use of automated image analysis in evaluation of mesothelioma tissue microarray (TMA) from National Mesothelioma Virtual Bank. Pathol Res Pract. 2014;210(2):79–82.

    Article  PubMed  Google Scholar 

  33. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol. 2022;40(4):555–65.

    Article  CAS  PubMed  Google Scholar 

  35. Spagnolo DM, Al-Kofahi Y, Zhu P, Lezon TR, Gough A, Stern AM, et al. Platform for quantitative evaluation of spatial intratumoral heterogeneity in multiplexed fluorescence images. Cancer Res. 2017;77(21):e71–e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spagnolo DM, Gyanchandani R, Al-Kofahi Y, Stern AM, Lezon TR, Gough A, et al. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers. J Pathol Inform. 2016;7:47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. elife. 2018:7.

    Google Scholar 

  38. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018;174(4):968–81.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coy S, Wang S, Stopka SA, Lin JR, Yapp C, Ritch CC, et al. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun. 2022;13(1):4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coy S, Rashid R, Lin JR, Du Z, Donson AM, Hankinson TC, et al. Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro-Oncology. 2018;20(8):1101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du Z, Lin JR, Rashid R, Maliga Z, Wang S, Aster JC, et al. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat Protoc. 2019;14(10):2900–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rashid R, Gaglia G, Chen YA, Lin JR, Du Z, Maliga Z, et al. Highly multiplexed immunofluorescence images and single-cell data of immune markers in tonsil and lung cancer. Sci Data. 2019;6(1):323.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoffer J, Rashid R, Muhlich JL, Chen YA, Russell DPW, Ruokonen J, et al. Minerva: a light-weight, narrative image browser for multiplexed tissue images. J Open Source Softw. 2020;5(54):2579.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cooper GF, Bahar I, Becich MJ, Benos PV, Berg J, Espino JU, et al. The center for causal discovery of biomedical knowledge from big data. J Am Med Inform Assoc. 2015;22(6):1132–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tosun AB, Pullara F, Becich MJ, Taylor DL, Fine JL, Chennubhotla SC. Explainable AI (xAI) for anatomic pathology. Adv Anat Pathol. 2020;27(4):241–50.

    Article  CAS  PubMed  Google Scholar 

  46. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO, Bordwell A, et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci U S A. 2013;110(29):11982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The human cell atlas. elife. 2017:6.

    Google Scholar 

  48. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell. 2020;181(2):236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fedorov A, Longabaugh WJR, Pot D, Clunie DA, Pieper S, Aerts H, et al. NCI imaging data commons. Cancer Res. 2021;81(16):4188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amin W, Parwani AV, Schmandt L, Mohanty SK, Farhat G, Pople AK, et al. National Mesothelioma Virtual Bank: a standard based biospecimen and clinical data resource to enhance translational research. BMC Cancer. 2008;8:236.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mohanty SK, Mistry AT, Amin W, Parwani AV, Pople AK, Schmandt L, et al. The development and deployment of Common Data Elements for tissue banks for translational research in cancer - an emerging standard based approach for the Mesothelioma Virtual Tissue Bank. BMC Cancer. 2008;8:91.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.

    Article  PubMed  Google Scholar 

  53. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rashid R, Silverstein JC, Ashby A, Davis M, Li Y, Becich MJ. REDCap and the National Mesothelioma Virtual Bank – A Scalable and Sustainable Model for Rare Disease Biorepository Management and Translational Research Support. Submitted. 2022.

    Google Scholar 

  55. ISBER. Internatonal Society for Biological and Environmental Repositories. 2022. https://www.isber.org/. Accessed 5 Sept 2022.

  56. Campbell LD, Astrin JJ, DeSouza Y, Giri J, Patel AA, Rawley-Payne M, et al. The 2018 revision of the ISBER best practices: summary of changes and the editorial team’s development process. Biopreserv Biobank. 2018;16(1):3–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rao AVJ, Guan P, Weil C, Moore HM. The NCI best practices for biospecimen resources: 2016 revised recommendations. Cancer Res. 2017;77:5947.

    Article  Google Scholar 

  58. McIntosh LD, Sharma MK, Mulvihill D, Gupta S, Juehne A, George B, et al. caTissue Suite to OpenSpecimen: Developing an extensible, open source, web-based biobanking management system. J Biomed Inform. 2015;57:456–64.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patel AA, Kajdacsy-Balla A, Berman JJ, Bosland M, Datta MW, Dhir R, et al. The development of common data elements for a multi-institute prostate cancer tissue bank: the Cooperative Prostate Cancer Tissue Resource (CPCTR) experience. BMC Cancer. 2005;5:108.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lowy D, Singer D, DePinho R, Simon GC, Soon-Shiong P. Cancer moonshot countdown. Nat Biotechnol. 2016;34(6):596–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lowy DR, Collins FS. Aiming high—Changing the trajectory for cancer. N Engl J Med. 2016;374(20):1901–4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Singer DS, Jacks T, Jaffee E. A US “Cancer Moonshot” to accelerate cancer research. Science. 2016;353(6304):1105–6.

    Article  CAS  PubMed  Google Scholar 

  63. De Gregorio A, Nagel G, Möller P, Rempen A, Schlicht E, Fritz S, et al. Feasibility of a large multi-center translational research project for newly diagnosed breast and ovarian cancer patients with affiliated biobank: the BRandO biology and outcome (BiO)-project. Arch Gynecol Obstet. 2020;301(1):273–81.

    Article  PubMed  Google Scholar 

  64. LiVolsi VA, Clausen KP, Grizzle W, Newton W, Pretlow TG 2nd, Aamodt R. The cooperative human tissue network. An update. Cancer. 1993;71(4):1391–4.

    Article  CAS  PubMed  Google Scholar 

  65. CHTN. About CHTN. Cooperative Human Tissue Network (CHTN). 2022. https://www.chtn.org/. Accessed 3 Oct 2022.

  66. ICGC TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.

    Article  Google Scholar 

  67. CBTTC. CBTTC Collection Protocol. CHOP Research Institute. 2022. https://wwwresearchchopedu/cbttc-collection-protocol. Accessed 3 Oct 2022.

  68. Gaffney EF, Riegman PH, Grizzle WE, Watson PH. Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotech Histochem. 2018;93(5):373–86.

    Article  CAS  PubMed  Google Scholar 

  69. Schapiro D, Yapp C, Sokolov A, Reynolds SM, Chen YA, Sudar D, et al. MITI minimum information guidelines for highly multiplexed tissue images. Nat Methods. 2022;19(3):262–7. https://github.com/miti-consortium/MITI.

  70. Markel SF, Hirsch SD. Synoptic surgical pathology reporting. Hum Pathol. 1991;22(8):807–10.

    Article  CAS  PubMed  Google Scholar 

  71. Leslie KO, Rosai J. Standardization of the surgical pathology report: formats, templates, and synoptic reports. Semin Diagn Pathol. 1994;11(4):253–7.

    CAS  PubMed  Google Scholar 

  72. Renshaw AA, Mena-Allauca M, Gould EW, Sirintrapun SJ. Synoptic reporting: evidence-based review and future directions. JCO Clin Cancer Inform. 2018;2:1–9.

    PubMed  Google Scholar 

  73. Silva J, Wittes R. Role of clinical trials informatics in the NCI’s cancer informatics infrastructure. Proc AMIA Symp. 1999:950–4.

    Google Scholar 

  74. NCI_SPOREs. Welcome to the Translational Research Program. 2022. https://trp.cancer.gov/. Accessed 4 Sept 22.

  75. NCI_CCSGs. NCI-Designated Cancer Centers. 2022. https://www.cancer.gov/research/infrastructure/cancer-centers. Accessed 4 Sept 2022.

  76. Dhir R, Patel AA, Winters S, Bisceglia M, Swanson D, Aamodt R, et al. A multidisciplinary approach to honest broker services for tissue banks and clinical data: a pragmatic and practical model. Cancer. 2008;113(7):1705–15.

    Article  PubMed  Google Scholar 

  77. Fisher CG, Goldschlager T, Boriani S, Varga PP, Fehlings MG, Bilsky MH, et al. A novel scientific model for rare and often neglected neoplastic conditions. Evid Based Spine Care J. 2013;4(2):160–2.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Felmeister AS, Masino AJ, Rivera TJ, Resnick AC, Pennington JW. The biorepository portal toolkit: an honest brokered, modular service oriented software tool set for biospecimen-driven translational research. BMC Genomics. 2016;17(Suppl 4):434.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gluski J, Zajciw P, Hariharan P, Morgan A, Morales DM, Jea A, et al. Characterization of a multicenter pediatric-hydrocephalus shunt biobank. Fluids Barriers CNS. 2020;17(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Willers C, Lynch T, Chand V, Islam M, Lassere M, March L. A versatile, secure, and sustainable all-in-one biobank-registry data solution: the A3BC REDCap model. Biopreserv Biobank. 2022;20(3):244–59.

    Article  PubMed  Google Scholar 

  81. Standardization IOf. Clinical Laboratory Testing and in Vitro Diagnostic Test Systems-Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices: Reference Method for Testing the in Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. 2006.

    Google Scholar 

  82. Shillito R. International standards and guidelines - Application of Sampling and Detection Methods in Agricultural Plant Biotechnology. Elsevier. 2022:215–25.

    Google Scholar 

  83. IOfS_ISO. ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. ABNT 2005.

    Google Scholar 

  84. NAACCR. Standards for Cancer Registries Volume V: Pathology Laboratory Electronic Reporting. 2020. https://www.naaccr.org/pathology-laboratory-electronic-reporting/. Accessed 5 Sept 2022.

  85. NAACCR. Data Exchange Standard XML Specifications for Cancer Registry Records, Version 1.6. 2022. https://www.naaccr.org/xml-data-exchange-standard/. Accessed 5 Sept 2022.

  86. NAACCR. Standards for Cancer Registries Volume II: Data Standards and Data Dictionary. 2022. https://www.naaccr.org/data-standards-data-dictionary/. Accessed 5 Sept 2022.

  87. NAACCR. Standards for Completeness, Quality, Analysis, Management, Security and Confidentiality of Data. 2008. https://www.naaccr.org/standards-for-completeness-quality-analysis-and-management-of-data/. Accessed 5 Sept 2022.

  88. NAACCR. Standards for Cancer Registries, Standard Data Edits. 2022. https://www.naaccr.org/standard-data-edits/. Aaccessed 5 Sept 2022.

  89. Jackson BR, Ye Y, Crawford JM, Becich MJ, Roy S, Botkin JR, et al. The ethics of artificial intelligence in pathology and laboratory medicine: principles and practice. Acad Pathol. 2021;8:2374289521990784.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bernstam EV, Shireman PK, Meric-Bernstam F, Zozus MN, Jiang X, Brimhall BB, et al. Artificial intelligence in clinical and translational science: successes, challenges and opportunities. Clin Transl Sci. 2022;15(2):309–21.

    Article  PubMed  Google Scholar 

  91. Horwitz R, Riley EAU, Millan MT, Gunawardane RN. It’s time to incorporate diversity into our basic science and disease models. Nat Cell Biol. 2021;23(12):1213–4.

    Article  CAS  PubMed  Google Scholar 

  92. Phuong J, Riches NO, Madlock-Brown C, Duran D, Calzoni L, Espinoza JC, et al. Social determinants of health factors for gene–environment COVID-19 research: challenges and opportunities. Adv Genet. 2022;3(2):2100056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aldrighetti CM, Niemierko A, Van Allen E, Willers H, Kamran SC. Racial and ethnic disparities among participants in precision oncology clinical studies. JAMA Netw Open. 2021;4(11):e2133205.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Somiari SB, Somiari RI. The future of biobanking: a conceptual look at how biobanks can respond to the growing human biospecimen needs of researchers. Adv Exp Med Biol. 2015;864:11–27.

    Article  PubMed  Google Scholar 

  95. Parra OD, Kohler LN, Landes L, Soto AA, Garcia D, Mullins J, et al. Biobanking in Latinos: current status, principles for conduct, and contribution of a new biobank, El Banco por Salud, designed to improve the health of Latino patients of Mexican ancestry with type 2 diabetes. BMJ Open Diabetes Res Care. 2022;10(3):e002709.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Regier R, Gurjar R, Rocha RA. A clinical rule editor in an electronic medical record setting: development, design, and implementation. AMIA Ann Symp Proc AMIA Symp. 2009;2009:537–41.

    Google Scholar 

  98. NCCIH. Building a Path to Whole Person Health. Secondary Building a Path to Whole Person Health. 2021. https://www.nccih.nih.gov/about/nccih-strategic-plan-2021-2025/introduction/building-a-path-to-whole-person-health. Accessed 5 Sept 2022.

  99. Sinclair KA, Muller C, Noonan C, Booth-LaForce C, Buchwald DS. Increasing health equity through biospecimen research: Identification of factors that influence willingness of Native Americans to donate biospecimens. Prev Med Rep. 2021;21:101311.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bridge2AI. Bridge to Artificial Intelligence (Bridge2AI). 2022. https://commonfund.nih.gov/bridge2ai. Accessed 3 Oct 2022.

  101. Therien AD, Beasley GM, Rhodin KE, Farrow NE, Tyler DS, Boczkowski D, et al. Spatial biology analysis reveals B cell follicles in secondary lymphoid structures may regulate anti-tumor responses at initial melanoma diagnosis. Front Immunol. 2022;13:952220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Banal JL, Bathe M. Scalable nucleic acid storage and retrieval using barcoded microcapsules. ACS Appl Mater Interfaces. 2021;13(2):49729–36.

    Article  CAS  PubMed  Google Scholar 

  103. Banal JL, Shepherd TR, Berleant J, Huang H, Reyes M, Ackerman CM, et al. Random access DNA memory using Boolean search in an archival file storage system. Nat Mater. 2021;20(9):1272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Uttam S, Stern AM, Sevinsky CJ, Furman S, Pullara F, Spagnolo D, et al. Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks. Nat Commun. 2020;11(1):3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kalra J, Baker J. Multiplex immunohistochemistry for mapping the tumor microenvironment. Methods Mol Biol. 2017;1554:237–51.

    Article  CAS  PubMed  Google Scholar 

  106. Halse H, Colebatch AJ, Petrone P, Henderson MA, Mills JK, Snow H, et al. Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep. 2018;8(1):11158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sorrelle N, Ganguly D, Dominguez ATA, Zhang Y, Huang H, Dahal LN, et al. Improved multiplex immunohistochemistry for immune microenvironment evaluation of mouse formalin-fixed, paraffin-embedded tissues. J Immunol. 2019;202(1):292–9.

    Article  CAS  PubMed  Google Scholar 

  108. Hutchison CA 3rd, Venter JC. Single-cell genomics. Nat Biotechnol. 2006;24(6):657–8.

    Article  CAS  PubMed  Google Scholar 

  109. Kalisky T, Quake SR. Single-cell genomics. Nat Methods. 2011;8(4):311–4.

    Article  CAS  PubMed  Google Scholar 

  110. Gawad C, Koh W, Quake SR. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci U S A. 2014;111(50):17947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50(4):924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 2022;12(6):1518–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA. The human cell atlas: from vision to reality. Nature. 2017;550(7677):451–3.

    Article  CAS  PubMed  Google Scholar 

  115. Osumi-Sutherland D, Xu C, Keays M, Levine AP, Kharchenko PV, Regev A, et al. Cell type ontologies of the human cell atlas. Nat Cell Biol. 2021;23(11):1129–35.

    Article  CAS  PubMed  Google Scholar 

  116. Aldridge S, Teichmann SA. Single cell transcriptomics comes of age. Nat Commun. 2020;11(1):4307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lindeboom RGH, Regev A, Teichmann SA. Towards a human cell atlas: taking notes from the past. Trends Genet. 2021;37(7):625–30.

    Article  CAS  PubMed  Google Scholar 

  118. Hon CC, Shin JW, Carninci P, Stubbington MJT. The human cell atlas: technical approaches and challenges. Brief Funct Genomics. 2018;17(4):283–94.

    Article  CAS  PubMed  Google Scholar 

  119. Rozenblatt-Rosen O, Shin JW, Rood JE, Hupalowska A, Regev A, Heyn H. Building a high-quality human cell atlas. Nat Biotechnol. 2021;39(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  120. Börner K, Teichmann SA, Quardokus EM, Gee JC, Browne K, Osumi-Sutherland D, et al. Anatomical structures, cell types and biomarkers of the human reference atlas. Nat Cell Biol. 2021;23(11):1117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chan_Zuckerberg_Initiative. Human Cell Atlas. 2022. https://chanzuckerberg.com/newsroom/helmsley-charitable-trust-and-chan-zuckerberg-initiative-announce-new-grant-opportunities-to-support-the-growth-of-the-human-cell-atlas/. Accessed 11 Sept 2022.

  122. Chan_Zuckerberg_Initiative. Seed Networks. https://chanzuckerberg.com/science/programs-resources/single-cell-biology/seednetworks/. Accessed 11 Sept 2022.

  123. Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SS, et al. A single-cell transcriptome atlas of the adult human retina. EMBO J. 2019;38(18):e100811.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Green ED, Watson JD, Collins FS. Human genome project: twenty-five years of big biology. Nature. 2015;526(7571):29–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Google Scholar 

  126. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1a):A68–77.

    PubMed  Google Scholar 

  127. Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, et al. The international cancer genome consortium data portal. Nat Biotechnol. 2019;37(4):367–9.

    Article  CAS  PubMed  Google Scholar 

  128. Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, et al. Gene Expression Atlas update—A value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res. 2012;40(Database issue):D1077–81.

    Article  CAS  PubMed  Google Scholar 

  129. GTEx. Genotype-Tissue Expression Project (GTEx). 2022. https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project. Accessed 28 Sept 2022.

  130. BLUPRINT. Blueprint Epigenome - Epigenomic data. 2022. https://www.blueprint-epigenome.eu/index.cfm?p=792379BE-F75A-4F54-896BBE87C8832A32. Accessed 28 Sept 2022.

  131. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. NMVB. National Mesothelioma Virtual Bank. 2022. http://www.mesotissue.org. Accessed 28 Sept 2022.

  133. Ardini-Poleske ME, Clark RF, Ansong C, Carson JP, Corley RA, Deutsch GH, et al. LungMAP: the molecular atlas of lung development program. Am J Physiol Lung Cell Mol Physiol. 2017;313(5):L733–l40.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, et al. The GUDMAP database—an online resource for genitourinary research. Development. 2011;138(13):2845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pancreatlas. Pancreatlas. 2022. https://pancreatlas.org/releases. Accessed 28 Sept 2022.

  136. Kidney_Precision_Medicine_Project. About the kidney precision medicine project. 2022. https://www.kpmp.org/about-kpmp. Accessed 28 Sept 2022.

  137. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, et al. The 4D nucleome project. Nature. 2017;549(7671):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Papatheodorou I, Moreno P, Manning J, Fuentes AM, George N, Fexova S, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 2020;48(D1):D77–d83.

    CAS  PubMed  Google Scholar 

  139. Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, et al. Japanese version of The Cancer Genome Atlas, JCGA, established using fresh frozen tumors obtained from 5143 cancer patients. Cancer Sci. 2020;111(2):687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Taylor DM, Aronow BJ, Tan K, Bernt K, Salomonis N, Greene CS, et al. The pediatric cell atlas: defining the growth phase of human development at single-cell resolution. Dev Cell. 2019;49(1):10–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. LifeTime_Initiative. LifeTime Initiative – Revolutionising healthcare by tracking, understanding, and treating human cells during diseases. 2022. https://lifetime-initiative.eu/. Accessed 28 Sept 2022.

  142. Suntsova M, Gaifullin N, Allina D, Reshetun A, Li X, Mendeleeva L, et al. Atlas of RNA sequencing profiles for normal human tissues. Sci Data. 2019;6(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rood JE, Stuart T, Ghazanfar S, Biancalani T, Fisher E, Butler A, et al. Toward a common coordinate framework for the human body. Cell. 2019;179(7):1455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. HuBMAP. General Frequently Asked Questions. 2022. https://commonfund.nih.gov/hubmap/generalfaqs. 18 Sept 2022.

  145. Cancer_Moonshot. Generation of Human Tumor Atlases, National Cancer Institute. 2022. https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/implementation/human-tumor-atlas. Accessed 18 Sept 2022.

  146. HuBMAP. The HuBMAP Human BioMolecular Atlas Program. 2022. https://hubmapconsortium.org//. Accessed 11 Sept 2022.

  147. Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science. 2003;300(5617):286–90.

    Article  CAS  PubMed  Google Scholar 

  148. Amodio MKS. MAGAN: Aligning biological manifolds. International Conference on Machine Learning, PMLR. 2018:215-23.

    Google Scholar 

  149. Liu J, Huang Y, Singh R, Vert JP, Noble WS. Jointly embedding multiple single-cell omics measurements. Algorithms Bioinform. 2019;143:10.

    PubMed  PubMed Central  Google Scholar 

  150. Roy AL, Sierra F, Howcroft K, Singer DS, Sharpless N, Hodes RJ, et al. A Blueprint for Characterizing Senescence. Cell. 2020;183(5):1143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lehmann R, Tautz D. In situ hybridization to RNA. Methods Cell Biol. 1994;44:575–98.

    Article  CAS  PubMed  Google Scholar 

  153. McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2019;9(11): a036798.

    Google Scholar 

  154. Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019;177(1):70–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang N, Li X, Wang R, Ding Z. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnol J. 2021;16(9):e2100041.

    Article  PubMed  Google Scholar 

  156. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22.

    Article  CAS  PubMed  Google Scholar 

  157. Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y, Xie W, et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol. 2019;37(9):1080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bodenmiller B. Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst. 2016;2(4):225–38.

    Article  CAS  PubMed  Google Scholar 

  159. Muhlich JL, Chen YA, Yapp C, Russell D, Santagata S, Sorger PK. Stitching and registering highly multiplexed whole slide images of tissues and tumors using ASHLAR. Bioinformatics (Oxford, England). 2022;38(19):4613–21.

    CAS  PubMed  Google Scholar 

  160. Schapiro D, Sokolov A, Yapp C, Chen YA, Muhlich JL, Hess J, et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat Methods. 2022;19(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  161. Lin J-R, Chen Y-A, Campton D, Cooper J, Coy S, Yapp C, et al. Multi-modal digital pathology for colorectal cancer diagnosis by high-plex immunofluorescence imaging and traditional histology of the same tissue section. bioRxiv. 2022.

    Google Scholar 

  162. Rashid R, Chen YA, Hoffer J, Muhlich JL, Lin JR, Krueger R, et al. Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data. Nat Biomed Eng. 2022;6(5):515–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following funding sources for MJB: (1) Center for Disease Control and National Institute for Occupational Safety and Health-5U24 OH009077-15; (2) National Center for Advancing Translational Science-2UL1 TR001857-06; and (3) Patient Centered Outcomes Research Institute Clinical Research Network-RI-CRN-2020-006. For RR: (1) National Institute of General Medical Sciences of the National Institutes of Health-5T32 GM 8208-33; (2) National Library of Medicine-2T15LM007059-36. NOTE: The content is solely the responsibility of the authors and does not necessarily represent the official views of the above listed funding sources. The co-authors would like to acknowledge the excellent editing assistance by Lorrie Ogden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Becich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C., Rashid, R., Sadhu, E.M., Santagata, S., Becich, M.J. (2023). Next Generation Biorepository Informatics: Supporting Genomics, Imaging, and Innovations in Spatial Biology. In: Richesson, R.L., Andrews, J.E., Fultz Hollis, K. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-031-27173-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27173-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27172-4

  • Online ISBN: 978-3-031-27173-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics