Skip to main content

Best Practices for Research Data Management

  • Chapter
  • First Online:
Clinical Research Informatics

Part of the book series: Health Informatics ((HI))

  • 644 Accesses

Abstract

Data is one of the most valuable assets to answer vital questions, so careful planning is needed to ensure quality while maximizing resources and controlling costs. Mature research and clinical trial organizations create and use data management plans to guide their processes from data generation to archiving. Today, clinical research activities are more complex due to a myriad of data sources, the use of new technologies, linkages between health care, patient reported, and research data environments, and the availability of digital tools. It is important to invest in training and hiring skilled data managers and informaticists to manage this rapidly changing landscape and to integrate variable and large-scale data. For everyone in the research enterprise, being aware of and implementing end-to-end data management best practices early in the research design phase can have a positive impact on data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krishnankutty B, Bellary S, Kumar NB, Moodahadu LS. Data management in clinical research: an overview. Indian J Pharmacol. 2012;44(2):168.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Society for Clinical Data Management. Good clinical data management practices(GCDMP) [Internet]. 2013 Oct [cited 2022 Jun 01]. https://scdm.org/wp-content/uploads/2019/05/Full-GCDMP-Oct-2013.pdf

  3. Ulrich H, Kock-Schoppenhauer AK, Deppenwiese N, Gött R, Kern J, Lablans M, Majeed RW, Stöhr MR, Stausberg J, Varghese J, Dugas M. Understanding the nature of metadata: systematic review. J Med Internet Res. 2022;24(1):e25440.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Go Fair.(Meta)data are associated with detailed provenance [Internet]. [cited 2022 Jun 01]. https://www.go-fair.org/fair-principles/r1-2-metadata-associated-detailed-provenance/

  5. U.S. Department of Health & Human Services (HHS). Human Research Protection Training [Internet]. [cited 2022 Jun 01]. https://www.hhs.gov/ohrp/education-and-outreach/online-education/human-research-protection-training/index.html

  6. National Institutes of Health (NIH). Good Clinical Practice Training [Internet]. [cited 2022 Jun 01]. https://grants.nih.gov/policy/clinical-trials/good-clinical-training.htm

  7. Zozus MN, Sanns W, Eisenstein E, Sanns B. Beyond EDC. J Soc Clin Data Manag. 2021;1(1):1–22.

    Google Scholar 

  8. Park YR, Yoon YJ, Koo H, Yoo S, Choi CM, Beck SH, Kim TW. Utilization of a clinical trial management system for the whole clinical trial process as an integrated database: system development. J Med Internet Res. 2018;20(4):e9312.

    Article  Google Scholar 

  9. Michael W. Electronic Clinical Trial Management Systems: The Basics, Needs, and Outputs. SoCRA [Internet]. 2021 Jan 04 [cited 2022 Jun 01]. https://www.socra.org/blog/electronic-clinical-trial-management-systems-the-basics-needs-and-outputs/.

  10. United States Food and Drug Administration; Guidance for Industry Part 11, Electronic Records; Electronic Signatures. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application

  11. U.S. Department of Health & Human Services (HHS). Revised Common Rule Q&As [Internet]. [cited 2022 Jun 01]. https://www.hhs.gov/ohrp/education-and-outreach/revised-common-rule/revised-common-rule-q-and-a/index.html.

  12. U.S. Food & Drug Administration (FDA). Use of Electronic Informed Consent in Clinical Investigations – Questions and Answers [Internet]. [cited 2022 Jun 01]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-electronic-informed-consent-clinical-investigations-questions-and-answers.

  13. TransCelerate BioPharma. What is eConsent? [Internet]. [cited 2022 Jun 01]. https://www.transceleratebiopharmainc.com/assets/econsent-solutions/what-is-econsent/#implementation-guidance.

  14. Research Electronic Data Capture (REDCap). https://www.project-redcap.org

  15. National Institutes of Health (NIH). Use Common Data Elements for More FAIR Research Data [Internet]. Waltham, MA: USA. [cited 27 May 2022]. https://cde.nlm.nih.gov/home.

  16. National Institutes of Health (NIH). BRIDG, ISO and DICOM [Internet]. [cited 27 May 2022]. https://bridgmodel.nci.nih.gov/bridg-iso-dicom.

  17. Von Rosing M, Von Scheel H, Scheer AW. The complete business process handbook: body of knowledge from process modeling to BPM, vol. 1. Morgan Kaufmann; 2014.

    Google Scholar 

  18. Gane C. Structured systems analysis: tools and techniques. Prentice-Hall, NJ: Englewood Cliffs; 1978.

    Google Scholar 

  19. UNICOM Systems. Ward and Mellor data flow diagrams [Internet]. [cited 27 May 2022]. https://support.unicomsi.com/manuals/systemarchitect/11482/starthelp.html#page/Architecting_and_designing%2FStructuredAnalysisDesign.18.010.html%23

  20. Visual Paradigm. DFD Using Yourdon and DeMarco Notation [Internet]. [cited 2022 Jun 01]. https://online.visual-paradigm.com/knowledge/software-design/dfd-using-yourdon-and-demarco

  21. Lucidchart. What is a data flow diagram? [Internet]. [cited 2022 Jun 01]. https://www.lucidchart.com/pages/data-flow-diagram#section_0

  22. Lucidchart. What is a data flow diagram? [Internet]. [cited 2022 Jun 01]. https://www.lucidchart.com/blog/data-flow-diagram-tutorial#:~:text=Data%20flow%20diagrams%20visually%20represent,a%20new%20system%20for%20implementation

  23. Bellary S, Krishnankutty B, Latha MS. Basics of case report form designing in clinical research. Perspect Clin Res. 2014;5(4):159.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guideline IH. Guideline for good clinical practice E6 (R1). ICH Harmon Tripart Guidel. 1996;1996(4)

    Google Scholar 

  25. Califf RM, Karnash SL, Woodlief LH. Developing systems for cost-effective auditing of clinical trials. Control Clin Trials. 1997;18(6):651–60.

    Article  CAS  PubMed  Google Scholar 

  26. Coons SJ, Eremenco S, Lundy JJ, O’Donohoe P, O’Gorman H, Malizia W. Capturing patient-reported outcome (PRO) data electronically: the past, present, and promise of ePRO measurement in clinical trials. Patient. 2015;8(4):301–9.

    Article  PubMed  Google Scholar 

  27. Coons SJ, Gwaltney CJ, Hays RD, Lundy JJ, Sloan JA, Revicki DA, Lenderking WR, Cella D, Basch E. Recommendations on evidence needed to support measurement equivalence between electronic and paper-based patient-reported outcome (PRO) measures: ISPOR ePRO good research practices task force report. Value Health. 2009;12(4):419–29.

    Article  PubMed  Google Scholar 

  28. Denny JC. Chapter 13: mining electronic health records in the genomics era. PLoS Comput Biol. 2012;8(12):e1002823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson JR, Wei WQ, Roden DM, Denny JC. Defining phenotypes from clinical data to drive genomic research. Annu Rev Biomed Data Sci. 2018;1:69–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Westra BL, Christie B, Johnson SG, Pruinelli L, LaFlamme A, Sherman SG, Park JI, Delaney CW, Gao G, Speedie S. Modeling flowsheet data to support secondary use. Comput Inform Nurs. 2017;35(9):452.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute CG, Kullo IJ, Li R, Pacheco JA. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zozus MN, Young LW, Simon AE, Garza M, Lawrence L, Tounpraseuth S, Bledsoe M, Newman-Norlund S, Jarvis JD, McNally M, Harris KR. Training as an intervention to decrease medical record abstraction errors multicenter studies. Stud Health Technol Inform. 2019;257:526.

    PubMed  PubMed Central  Google Scholar 

  33. National Institutes of Health Pragmatic Trials Collaboratory. Electronic Health Records Based Phenotyping [Internet]. [cited 2022 Jun 01]. https://rethinkingclinicaltrials.org/chapters/conduct/electronic-health-records-based-phenotyping/electronic-health-records-based-phenotyping-introduction/

  34. Wei WQ, Denny JC. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med. 2015;7(1):1–4.

    Article  CAS  Google Scholar 

  35. Peissig PL, Rasmussen LV, Berg RL, Linneman JG, McCarty CA, Waudby C, Chen L, Denny JC, Wilke RA, Pathak J, Carrell D. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records. J Am Med Inform Assoc. 2012;19(2):225–34.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Richesson RL, Smerek MM, Cameron CB. A framework to support the sharing and reuse of computable phenotype definitions across health care delivery and clinical research applications. eGEMs. 2016;4(3):1232.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Levinson RT, Malinowski JR, Bielinski SJ, Rasmussen LV, Wells QS, Roger VL, Wiley LK Identifying heart failure from electronic health records: a systematic evidence review medRxiv. 2021.

    Google Scholar 

  38. Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman O, Peissig PL, Pacheco JA, Tromp G, Pathak J, Carrell DS, Ellis SB. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J Am Med Inform Assoc. 2016;23(6):1046–52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. HDR UK Caliber Phenotype Library [Internet]. HDR UK Phenotype Library. [cited 2022Aug3]. https://portal.caliberresearch.org/

  40. Rasmussen LV, Brandt PS, Jiang G, Kiefer RC, Pacheco JA, Adekkanattu P, Ancker JS, Wang F, Xu Z, Pathak J, Luo Y. Considerations for improving the portability of electronic health record-based phenotype algorithms. In AMIA Annual Symposium Proceedings 2019 (Vol. 2019, p. 755). American Medical Informatics Association.

    Google Scholar 

  41. Mo H, Thompson WK, Rasmussen LV, Pacheco JA, Jiang G, Kiefer R, et al. Desiderata for computable representations of electronic health records-driven phenotype algorithms. J Am Med Inform Assoc. 2015;22(6):1220–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Richesson R, Wiley LK, Gold S, Rasmussen L. Electronic Health REcords-Based Phenotyping: Introduction. NIH Health Care Systems Research Collaboratory Electronic Health Records Core Working Group. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc. 2021;20:e226–31. https://doi.org/10.1136/amiajnl-2013-001926.

    Article  Google Scholar 

  43. Richesson RL, Rusincovitch SA, Wixted D, Batch BC, Feinglos MN, Miranda ML, Hammond W, Califf RM, Spratt SE. A comparison of phenotype definitions for diabetes mellitus. J Am Med Inform Assoc. 2013;20(e2):e319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Haendel MA, Chute CG, Bennett TD, Eichmann DA, Guinney J, Kibbe WA, Payne PR, Pfaff ER, Robinson PN, Saltz JH, Spratt H. The national COVID cohort collaborative (N3C): rationale, design, infrastructure, and deployment. J Am Med Inform Assoc. 2021;28(3):427–43.

    Article  PubMed  Google Scholar 

  45. U.S. Department of Health & Human Services (HHS). Summary of the HIPAA Privacy Rule [Internet]. [cited 2022 Jun 01]. https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html.

  46. Hemming K, Kearney A, Gamble C, Li T, Jüni P, Chan AW, Sydes MR. Prospective reporting of statistical analysis plans for randomised controlled trials. Trials. 2020;21(1):1–2.

    Article  Google Scholar 

  47. Yuan I, Topjian AA, Kurth CD, Kirschen MP, Ward CG, Zhang B, Mensinger JL. Guide to the statistical analysis plan. Pediatr Anesth. 2019;29(3):237–42.

    Article  Google Scholar 

  48. Services H. National Institutes of Health. Clinical trials registration and results information submission. Final rule. Fed Regist. 2016;81(183):64981–5157.

    Google Scholar 

  49. Guideline IH. Statistical Principles for Clinical Trials. Geneva In International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use 1998.

    Google Scholar 

  50. Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013:346.

    Google Scholar 

  51. Gamble C, Krishan A, Stocken D, Lewis S, Juszczak E, Doré C, Williamson PR, Altman DG, Montgomery A, Lim P, Berlin J. Guidelines for the content of statistical analysis plans in clinical trials. JAMA. 2017;318(23):2337–43.

    Article  PubMed  Google Scholar 

  52. Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc. 2013;20(1):144–51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. European Medicines Agency. ICH Topic E 6 (R1). Guideline for Good Clinical Practice. Note for Guidance on Good Clinical Practice.

    Google Scholar 

  54. European Medicines Agency. ICH Topic E 6 (R2). Guideline for Good Clinical Practice.

    Google Scholar 

  55. Hines S. Targeting source document verification. Appl Clin Trials. 2011;20(2):38.

    Google Scholar 

  56. Dykes B. Reporting vs. analysis: What’s the difference. Digital Marketing Blog. 2010.

    Google Scholar 

  57. Walden A, Nahm M, Barnett ME, Conde JG, Dent A, Fadiel A, Perry T, Tolk C, Tcheng JE, Eisenstein EL. Economic analysis of centralized vs. decentralized electronic data capture in multi-center clinical studies. Stud Health Technol Inform. 2011;164:82.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Walden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walden, A., Garza, M., Rasmussen, L. (2023). Best Practices for Research Data Management. In: Richesson, R.L., Andrews, J.E., Fultz Hollis, K. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-031-27173-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27173-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27172-4

  • Online ISBN: 978-3-031-27173-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics