Skip to main content

Targeted Therapy and Personalized Medicine

  • Chapter
  • First Online:
Therapeutic Approaches in Cancer Treatment

Abstract

Targeted therapy and personalized medicine are novel emerging disciplines of cancer research intended for treatment and prevention. One of the most significant advancements in modern oncology is the shift from an organ-centric strategy to a personalized strategy guided by deep molecular analysis. This shift in view, which focuses on the tumour’s precise molecular changes, has paved the way for individualized treatment. Researchers and clinicians are using targeted therapies to select the best treatment available based on the molecular characterization of malignant cancer. In the treatment of a cancer, personalized medicine entails the use of genetic, immunological, and proteomic profiling to provide therapeutic alternatives as well as prognostic information about cancer. In this book, targeted therapies and personalized medicine have been covered for specific malignancies, including latest FDA-approved targeted therapies and it also sheds light on effective anti-cancer regimens and drug resistance. This will help to enhance our ability to conduct individualized health planning, make early diagnoses, and choose optimal medications for each cancer patient with predictable side effects and outcomes in a quickly evolving era. Various applications and tools’ capacity have been improved for early diagnosis of cancer and the growing number of clinical trials that choose specific molecular targets reflects this predicament. Nevertheless, there are several limitations that must need to be addressed. Hence, in this chapter, we will discuss recent advancements, challenges, and opportunities in personalized medicine for various cancers, with a specific emphasis on target therapies in diagnostics and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Acute lymphocytic leukaemia:

ALL

Acute myeloid leukaemia:

AML

Adenosine triphosphate:

ATP

Anaplastic lymphoma kinase:

ALK

Chronic lymphocytic leukaemia:

CLL

Chronic myeloid (or myelogenous) leukaemia:

CML

Colorectal cancer:

CRC

Computed tomography:

CT

Cyclin dependent kinase 4 and 6:

CDK 4/6

Cytotoxic T-lymphocyte antigen 4:

CTLA-4

Epidermal growth factor receptor:

EGFR

Fms-related receptor tyrosine kinase 3:

FLT3

Folate-receptor:

FR

Hepatocellular carcinoma:

HCC

Human epidermal growth factor receptor-2:

HER

Internal tandem duplications:

FLT3-ITD

Magnetic resonance imaging:

MRI

Metastatic CRC:

mCRC

Multidrug resistance:

MDR

National cancer institute:

NCI

Non-small cell lung cancer:

NSCLC

Oestrogen receptor:

ER

Overall response rate:

ORR

Platelet derived growth factor receptor:

PDGFR

Poly-ADP ribose polymerase:

PARP

Positron emission tomography:

PET

Precision and personalized medicine:

PPM

Progesterone receptor:

PR

Programmed death-ligand 1:

PD-L1

Progression-free survival:

PFS

Prostate-specific antigen:

PSA

Receptor tyrosine kinase:

RTK

Relapsed/refractory:

R/R

RNA interference:

RNAi

Small interfering RNA:

SiRNA

Tyrosine kinase domain:

FLT3-TKD

Tyrosine kinase inhibitors:

TKIs

Vascular epidermal growth factor receptor:

VEGFR

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Google Scholar 

  2. Lim Z-F, Ma PC (2019) Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 12(1):134

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldblatt EM, Lee W-H (2010) From bench to bedside: the growing use of translational research in cancer medicine. Am J Transl Res 2(1):1–18

    PubMed  PubMed Central  Google Scholar 

  4. Liu D (2019) Cancer biomarkers for targeted therapy. Biomark Res 7(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Majithia N, Rajkumar SV, Lacy MQ, Buadi FK, Dispenzieri A, Gertz MA et al (2016) Early relapse following initial therapy for multiple myeloma predicts poor outcomes in the era of novel agents. Leukemia 30(11):2208–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saijo N, Nishio K, Tamura T (2003) Translational and clinical studies of target-based cancer therapy. Int J Clin Oncol 8(4):187–192

    Article  PubMed  Google Scholar 

  7. Pucci C, Martinelli C, Ciofani G (2019) Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 13:961

    Google Scholar 

  8. Carr KM, Rosenblatt K, Petricoin EF, Liotta LA (2004) Genomic and proteomic approaches for studying human cancer: prospects for true patient-tailored therapy. Hum Genomics 1(2):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, Lowy DR (2021) The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184(7):1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S et al (2019) Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84–89

    Article  PubMed  PubMed Central  Google Scholar 

  12. Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6(10):4103–4112

    CAS  PubMed  Google Scholar 

  13. Tauchen J, Huml L, Rimpelova S, Jurášek M (2020) Flavonoids and related members of the aromatic polyketide group in human health and disease: do they really work? Molecules 25(17):3846

    Google Scholar 

  14. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7(193)

    Google Scholar 

  15. Goldberg MS (2019) Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19(10):587–602

    Article  CAS  PubMed  Google Scholar 

  16. Jia L-T, Chen S-Y, Yang A-G (2012) Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat Rev 38(7):868–876

    Article  CAS  PubMed  Google Scholar 

  17. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  CAS  PubMed  Google Scholar 

  18. Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A et al (2017) Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 13(2):48–57

    PubMed  PubMed Central  Google Scholar 

  19. Meng Y, Sun J, Qu N, Zhang G, Yu T, Piao H (2019) Application of radiomics for personalized treatment of cancer patients. Cancer Manag Res 11:10851–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  21. Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77(3):311–319

    Google Scholar 

  22. Sorokin P (2000) Mylotarg approved for patients with CD33+ acute myeloid leukemia. Clin J Oncol Nurs 4(6):279–280

    CAS  PubMed  Google Scholar 

  23. Lode HN, Xiang R, Becker JC, Gillies SD, Reisfeld RA (1998) Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 80(3):277–292

    Article  CAS  Google Scholar 

  24. Kawakami K, Nakajima O, Morishita R, Nagai R (2006) Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. TheScientificWorldJOURNAL 6:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yap TA, Workman P (2012) Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol 52:549–573

    Article  CAS  PubMed  Google Scholar 

  26. Frigerio B, Bizzoni C, Jansen G, Leamon CP, Peters GJ, Low PS et al (2019) Folate receptors and transporters: biological role and diagnostic/therapeutic targets in cancer and other diseases. J Exp Clin Cancer Res CR 38(1):125

    Article  PubMed  Google Scholar 

  27. Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21(9)

    Google Scholar 

  28. Munroe DJ, Harris TJ (2010) Third-generation sequencing fireworks at Marco Island. Nat Biotechnol 28(5):426–428

    Article  CAS  PubMed  Google Scholar 

  29. Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M et al (2018) The growing role of precision and personalized medicine for cancer treatment. Technology 6(3–4):79–100

    Article  PubMed  Google Scholar 

  30. Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19(5):299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwaederle M, Zhao M, Lee JJ, Lazar V, Leyland-Jones B, Schilsky RL et al (2016) Association of biomarker-based treatment strategies with response rates and progression-free survival in refractory malignant neoplasms: a meta-analysis. JAMA Oncol 2(11):1452–1459

    Article  PubMed  Google Scholar 

  32. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Sci (N Y) 304(5676):1497–1500

    Article  CAS  Google Scholar 

  33. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  CAS  Google Scholar 

  34. Di Martino S, Rainone A, Troise A, Di Paolo M, Pugliese S, Zappavigna S et al (2015) Overview of FDA-approved anti cancer drugs used for targeted therapy. WCRJ 2:e553

    Google Scholar 

  35. Alberg AJ, Nonemaker J (2008) Who is at high risk for lung cancer? Population-level and individual-level perspectives. Semin Respir CritAl Care Med 29(3):223–232

    Article  Google Scholar 

  36. Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. Eur Respir J 48(3):889–902

    Google Scholar 

  37. Matakidou A, Eisen T, Houlston RS (2005) Systematic review of the relationship between family history and lung cancer risk. Br J Cancer 93(7):825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet (Lond, Engl) 389(10066):299–311

    Article  CAS  Google Scholar 

  39. Martine NE, Hahn SM, McKenna WG (2005) Molecular biology and genetics of lung cancer. In: Jeremić B (ed) Advances in radiation oncology in lung cancer. Springer-Verlag, Berlin, p 6

    Google Scholar 

  40. Wu K, House L, Liu W, Cho WCS (2012) Personalized targeted therapy for lung cancer. Int J Mol Sci 13(9):11471–11496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Google Scholar 

  42. Yang JC, Sequist LV, Geater SL, Tsai C-M, Mok TSK, Schuler M et al (2015) Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16(7):830–838

    Google Scholar 

  43. Jänne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam SS et al (2015) AZD9291 in EGFR inhibitor–resistant non–small-cell lung cancer. N Engl J Med 372(18):1689–1699

    Google Scholar 

  44. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R et al (2014) Crizotinib in ROS1-rearranged non–small-cell lung cancer. N Engl J Med 371(21):1963–1971

    Google Scholar 

  45. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Google Scholar 

  46. Duruisseaux M, Mc Leer-Florin A, Moro-Sibilot D, Cadranel J (2017) Are ALK rearrangement variants promising predictive biomarker of ALK tyrosine kinase inhibitors efficacy? Ann Oncol 28(6):1401

    Google Scholar 

  47. Mazières J, Zalcman G, Crinò L, Biondani P, Barlesi F, Filleron T et al (2015) Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol Off J Am Soc Clin Oncol 33(9):992–999

    Article  Google Scholar 

  48. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W et al (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res Off J Am Assoc Cancer Res 19(8):2240–2247

    Article  CAS  Google Scholar 

  49. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li J, Wang Z, Shao Z (2019) Fulvestrant in the treatment of hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: a review. Cancer Med 8(5):1943–1957

    Google Scholar 

  51. Hu R, Hilakivi-Clarke L, Clarke R (2015) Molecular mechanisms of tamoxifen-associated endometrial cancer. Oncol Lett 9(4):1495–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Howell A, Robertson JF, Quaresma Albano J, Aschermannova A, Mauriac L, Kleeberg UR et al (2002) Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20(16):3396–3403

    Article  CAS  PubMed  Google Scholar 

  53. Osborne C, Pippen J, Jones S, Parker L, Ellis M, Come S et al (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20(16):3386–3395

    Article  CAS  PubMed  Google Scholar 

  54. Robertson JF, Osborne CK, Howell A, Jones SE, Mauriac L, Ellis M et al (2003) Fulvestrant versus anastrozole for the treatment of advanced breast carcinoma in postmenopausal women: a prospective combined analysis of two multicenter trials. Cancer 98(2):229–238

    Article  CAS  PubMed  Google Scholar 

  55. von Minckwitz G, du Bois A, Schmidt M, Maass N, Cufer T, de Jongh FE et al (2009) Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03–05 study. J Clin Oncol Off J Am Soc Clin Oncology 27(12):1999–2006

    Article  Google Scholar 

  56. Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A et al (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol Off J Am Soc Clin Oncology 27(33):5529–5537

    Article  CAS  Google Scholar 

  57. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  58. Von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G et al (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 377(2):122–131

    Article  Google Scholar 

  59. Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12(18):5268–5272

    Article  CAS  PubMed  Google Scholar 

  60. Fang L, Barekati Z, Zhang B, Liu Z, Zhong X (2011) Targeted therapy in breast cancer: what’s new? Swiss Med Wkly 141(2526)

    Google Scholar 

  61. Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M et al (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 28(7):1124–1130

    Article  CAS  Google Scholar 

  62. Blackwell KL, Burstein HJ, Storniolo AM, Rugo HS, Sledge G, Aktan G et al (2012) Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol Off J Am Soc Clin Oncol 30(21):2585–2592

    Article  CAS  Google Scholar 

  63. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  64. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5(4):387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533

    Article  CAS  PubMed  Google Scholar 

  66. Karginova O, Siegel MB, Van Swearingen AE, Deal AM, Adamo B, Sambade MJ et al (2015) Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA–wild-type triple-negative breast cancer. Mol Cancer Ther 14(4):920–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu KD, Ye FG, He M, Fan L, Ma D, Mo M et al (2020) Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial. JAMA Oncol 6(9):1390–1396

    Article  PubMed  Google Scholar 

  68. Meisel JL, Venur VA, Gnant M, Carey L (2018) Evolution of targeted therapy in breast cancer: where precision medicine began. Am Soc Clin Oncol Educ Book 38:78–86

    Article  PubMed  Google Scholar 

  69. Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N Engl J Med 366(6):520–529

    Article  CAS  PubMed  Google Scholar 

  70. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO et al (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35

    Article  CAS  PubMed  Google Scholar 

  71. Thomas E, Holmes FA, Smith TL, Buzdar AU, Frye DK, Fraschini G et al (2004) The use of alternate, non–cross-resistant adjuvant chemotherapy on the basis of pathologic response to a neoadjuvant doxorubicin-based regimen in women with operable breast cancer: long-term results from a prospective randomized Trial. J Clin Oncol 22(12):2294–2302

    Article  CAS  PubMed  Google Scholar 

  72. Strumberg D, Nitiss JL, Rose A, Nicklaus MC, Pommier Y (1999) Mutation of a conserved serine residue in a quinolone-resistant type II topoisomerase alters the enzyme-DNA and drug interactions. J Biol Chem 274(11):7292–7301

    Article  CAS  PubMed  Google Scholar 

  73. Noguchi K, Katayama K, Sugimoto Y (2014) Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmacogenomics Pers Med 7:53

    Google Scholar 

  74. Redmond KM, Wilson TR, Johnston PG, Longley DB (2008) Resistance mechanisms to cancer chemotherapy. Front Biosci 13:5138–5154

    Article  CAS  PubMed  Google Scholar 

  75. Raguz S, Adams C, Masrour N, Rasul S, Papoutsoglou P, Hu Y et al (2013) Loss of O6-methylguanine-DNA methyltransferase confers collateral sensitivity to carmustine in topoisomerase II-mediated doxorubicin resistant triple negative breast cancer cells. Biochem Pharmacol 85(2):186–196

    Article  CAS  PubMed  Google Scholar 

  76. Li W-J, Zhong S-L, Wu Y-J, Xu W-D, Xu J-J, Tang J-H et al (2013) Systematic expression analysis of genes related to multidrug-resistance in isogenic docetaxel-and adriamycin-resistant breast cancer cell lines. Mol Biol Rep 40(11):6143–6150

    Article  CAS  Google Scholar 

  77. Christowitz C, Davis T, Isaacs A, van Niekerk G, Hattingh S, Engelbrecht A-M (2019) Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 19(1):757

    Article  PubMed  PubMed Central  Google Scholar 

  78. Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet (Lond, Engl) 378(9805):1812–1823

    Article  CAS  Google Scholar 

  79. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691

    Article  PubMed  Google Scholar 

  80. Rawla P, Sunkara T, Barsouk A (2019) Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 14(2):89–103

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Graham DM, Coyle VM, Kennedy RD, Wilson RH (2016) Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Color Cancer Rep 12:141–150

    Google Scholar 

  82. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345

    Article  CAS  PubMed  Google Scholar 

  83. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol Off J Am Soc Clin Oncol 28(31):4697–4705

    Article  CAS  Google Scholar 

  84. Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP et al (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 26(14):2311–2319

    Article  CAS  Google Scholar 

  85. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol Off J Am Soc Clin Oncol 30(28):3499–3506

    Article  Google Scholar 

  86. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312.

    Google Scholar 

  87. Sforza V, Martinelli E, Ciardiello F, Gambardella V, Napolitano S, Martini G et al (2016) Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol 22(28):6345

    Google Scholar 

  88. Moorcraft SY, Smyth EC, Cunningham D (2013) The role of personalized medicine in metastatic colorectal cancer: an evolving landscape. Therap Adv Gastroenterol 6(5):381–395

    Article  PubMed  PubMed Central  Google Scholar 

  89. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M et al (2016) Hepatocellular carcinoma. Nat Rev Dis Prim 2:16018

    Google Scholar 

  90. Kew MC (2014) Hepatocellular carcinoma: epidemiology and risk factors. J Hepatocell Carcinoma 1:115

    Article  PubMed  PubMed Central  Google Scholar 

  91. Galun D, Basaric D, Zuvela M, Bulajic P, Bogdanovic A, Bidzic N et al (2015) Hepatocellular carcinoma: from clinical practice to evidence-based treatment protocols. World J Hepatol 7(20):2274

    Article  PubMed  PubMed Central  Google Scholar 

  92. Deng G-L, Zeng S, Shen H (2015) Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol 7(5):787

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tai W-T, Cheng A-L, Shiau C-W, Huang H-P, Huang J-W, Chen P-J et al (2011) Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 55(5):1041–1048

    Article  CAS  PubMed  Google Scholar 

  94. Stotz M, Gerger A, Haybaeck J, Kiesslich T, Bullock MD, Pichler M (2015) Molecular targeted therapies in hepatocellular carcinoma: past, present and future. Anticancer Res 35(11):5737–5744

    CAS  PubMed  Google Scholar 

  95. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390

    Article  CAS  PubMed  Google Scholar 

  96. Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34

    Article  CAS  PubMed  Google Scholar 

  97. Benson AB 3rd, Abrams TA, Ben-Josef E, Bloomston PM, Botha JF, Clary BM et al (2009) NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Cancer Netw JNCCN 7(4):350–391

    Article  CAS  PubMed  Google Scholar 

  98. Capozzi M, De Divitiis C, Ottaiano A, von Arx C, Scala S, Tatangelo F et al (2019) Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res 11:3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126):1163–1173

    Article  CAS  PubMed  Google Scholar 

  100. Benson AB, D’Angelica MI, Abbott DE, Abrams TA, Alberts SR, Anaya DA et al (2017) NCCN guidelines insights: hepatobiliary cancers, version 1.2017. J Natl Compr Cancer Netw 15(5):563–73

    Google Scholar 

  101. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39

    Article  CAS  PubMed  Google Scholar 

  102. Perol M, Ciuleanu T-E, Arrieta O, Prabhash K, Syrigos KN, Göksel T et al (2014) REVEL: a randomized, double-blind, phase III study of docetaxel (DOC) and ramucirumab (RAM; IMC-1121B) versus DOC and placebo (PL) in the second-line treatment of stage IV non-small cell lung cancer (NSCLC) following disease progression after one prior platinum-based therapy. American Society of Clinical Oncology

    Google Scholar 

  103. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E et al (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97

    Article  CAS  PubMed  Google Scholar 

  105. Wen L, Liang C, Chen E, Chen W, Liang F, Zhi X et al (2016) Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Sci Rep 6:23269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miura S, Mitsuhashi N, Shimizu H, Kimura F, Yoshidome H, Otsuka M et al (2012) Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 12:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao L, Wang X, Tang Y, Huang S, Hu CA, Teng Y (2017) FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res CR 36(1):8

    Article  PubMed  Google Scholar 

  108. Miki D, Ochi H, Hayes CN, Aikata H, Chayama K (2012) Hepatocellular carcinoma: towards personalized medicine. Cancer Sci 103(5):846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Forner A, Da Fonseca LG, Díaz-González Á, Sanduzzi-Zamparelli M, Reig M, Bruix J (2019) Controversies in the management of hepatocellular carcinoma. JHEP Reports. 1(1):17–29

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M et al (2018) Cancer today (powered by GLOBOCAN 2018). Lyon (FR)

    Google Scholar 

  111. Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stone RM, Manley PW, Larson RA, Capdeville R (2018) Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv 2(4):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A (2020) FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia 34(3):682–696

    Article  PubMed  Google Scholar 

  114. Zhao J, Song Y, Liu D (2019) Gilteritinib: a novel FLT3 inhibitor for acute myeloid leukemia. Biomark Res 7(1):1–6

    Google Scholar 

  115. Sidaway P (202) Gilteritinib improves outcomes in AML. Nat Rev Clin Oncol 17(2):69

    Google Scholar 

  116. Zhang H, Savage S, Schultz AR, Bottomly D, White L, Segerdell E et al (2019) Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun 10(1):1–13

    Google Scholar 

  117. Sandmaier BM, Khaled S, Oran B, Gammon G, Trone D, Frankfurt O (2018) Results of a phase 1 study of quizartinib as maintenance therapy in subjects with acute myeloid leukemia in remission following allogeneic hematopoietic stem cell transplant. Am J Hematol 93(2):222–231

    Article  CAS  PubMed  Google Scholar 

  118. Altman JK, Foran JM, Pratz KW, Trone D, Cortes JE, Tallman MS (2018) Phase 1 study of quizartinib in combination with induction and consolidation chemotherapy in patients with newly diagnosed acute myeloid leukemia. Am J Hematol 93(2):213–221

    Article  CAS  PubMed  Google Scholar 

  119. O’Farrell A-M, Foran JM, Fiedler W, Serve H, Paquette RL, Cooper MA et al (2003) An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 9(15):5465–5476

    PubMed  Google Scholar 

  120. Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC et al (2012) Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood, J Am Soc Hematol 119(22):5133–5143

    CAS  Google Scholar 

  121. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004

    Article  CAS  Google Scholar 

  122. Kong Y, Wu Y-L, Song Y, Shi M-M, Cao X-N, Zhao H-Y et al (2017) Ruxolitinib/nilotinib cotreatment inhibits leukemia-propagating cells in Philadelphia chromosome-positive ALL. J Transl Med 15(1):1–13

    Article  Google Scholar 

  123. Verstovsek S, Odenike O, Singer JW, Granston T, Al-Fayoumi S, Deeg HJ (2016) Phase 1/2 study of pacritinib, a next generation JAK2/FLT3 inhibitor, in myelofibrosis or other myeloid malignancies. J Hematol Oncol 9(1):1–12

    Article  Google Scholar 

  124. Zhang J, Gu Y, Chen B (2019) Mechanisms of drug resistance in acute myeloid leukemia. Onco Targets Ther 12:1937–1945

    Article  PubMed  PubMed Central  Google Scholar 

  125. Williams SC (2015) News feature: capturing cancer’s complexity. Proc Natl Acad Sci USA 112(15):4509–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Duarte TT, Spencer CT (2016) Personalized proteomics: the future of precision medicine. Proteomes 4(4)

    Google Scholar 

  127. Verma M (2012) Personalized medicine and cancer. J Pers Med 2(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. FDA (2016) FDA advances precision medicine initiative by issuing draft guidances on next generation sequencing-based tests. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm509814.htm. Last Accessed 9 Oct 2021

  129. Maciejko L, Smalley M, Goldman A (2017) Cancer immunotherapy and personalized medicine: emerging technologies and biomarker-based approaches. J Mol Biomark Diagn 8(5)

    Google Scholar 

  130. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  CAS  PubMed  Google Scholar 

  131. Chae YK, Pan AP, Davis AA, Patel SP, Carneiro BA, Kurzrock R et al (2017) Path toward precision oncology: review of targeted therapy studies and tools to aid in defining “Actionability” of a molecular lesion and patient management support. Mol Cancer Ther 16(12):2645–2655

    Article  CAS  PubMed  Google Scholar 

  132. Meric-Bernstam F, Johnson A, Holla V, Bailey AM, Brusco L, Chen K et al (2015) A decision support framework for genomically informed investigational cancer therapy. J Natl Cancer Inst 107(7)

    Google Scholar 

  133. Conley BA (2015) Genomically guided cancer treatments: from “promising” to “clinically useful”. Oxford University Press, US

    Google Scholar 

  134. McShane LM, Polley MY (2013) Development of omics-based clinical tests for prognosis and therapy selection: the challenge of achieving statistical robustness and clinical utility. Clin Trials (Lond, Engl) 10(5):653–665

    Article  Google Scholar 

  135. McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM et al (2013) Criteria for the use of omics-based predictors in clinical trials. Nature 502(7471):317–320

    Article  CAS  PubMed  Google Scholar 

  136. Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259

    Article  CAS  PubMed  Google Scholar 

  137. Schram AM, Chang MT, Jonsson P, Drilon A (2017) Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 14(12):735–748

    Article  CAS  PubMed  Google Scholar 

  138. Metro G, Finocchiaro G, Toschi L, Bartolini S, Magrini E, Cancellieri A et al (2006) Epidermal growth factor receptor (EGFR) targeted therapies in non-small cell lung cancer (NSCLC). Rev Recent Clin Trials 1(1):1–13

    Article  CAS  PubMed  Google Scholar 

  139. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16(12):713–732

    Article  PubMed  Google Scholar 

  140. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rida Fatima Saeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saeed, R.F., Awan, U.A., Saeed, S., Mumtaz, S., Akhtar, N., Aslam, S. (2023). Targeted Therapy and Personalized Medicine. In: Qazi, A.S., Tariq, K. (eds) Therapeutic Approaches in Cancer Treatment. Cancer Treatment and Research, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-031-27156-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27156-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27155-7

  • Online ISBN: 978-3-031-27156-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics