Skip to main content

Recent Insights in the Utilization of Metal Phosphonates for Remediation of Dye-Polluted Wastewaters

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 317 Accesses

Abstract

The field of metal phosphonates (MPs) has gained importance for sustainable energy and environmental applications over recent years. They are a prominent kind of metal–organic hybrid structures, revealing potential appliances in materials sciences, catalysis, ion- exchange, separation, and sorption, owing to their superior stability and insolubility in most solvents, which could be attributed to the hard nature of the phosphonate oxygen atoms and higher coordination affinity for metallic atoms. In the remediation of wastewater treatment, the utilization of novel materials with high adsorption capability and removal efficiency is a matter of major significance. The principal aim of this Chapter is to present a survey on the MP-based systems in the elimination of dye-polluted wastewater. The adsorptive removal of dyes from aqueous solution has been presented in the framework of the recently published works that demonstrated the feasibility and efficiency of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sebeia, N., Jabli, M., Ghith, A.: [λ-Carrageenan-calcium phosphate] and [sodium alginate-calcium phosphate] modified with dimethyl diallyl ammonium chloride and diallylamin co-polymer as efficient adsorbents of anionic dyes. Int. J. Biol. Macromol. 126, 641–652 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. Sriram, G., Bendre, A., Mariappan, E., Altalhi, T., Kigga, M., Ching, Y.C., Jung, H.-Y., Bhaduri, B., Kurkuri, M.: Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism—a review. Sustain. Mater. Technol. 31, e00378 (2022)

    CAS  Google Scholar 

  3. Foroutan, R., Peighambardoust, S.J., Hemmati, S., Khatooni, H., Ramavandi, B.: Preparation of clinoptilolite/starch/CoFe2O4 magnetic nanocomposite powder and its elimination properties for cationic dyes from water and wastewater. Int. J. Biol. Macromol. 189, 432–442 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. Pai, S., Kini, M.S., Mythili, R., Selvaraj, R.: Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environ. Res. 210, 112951 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Vinayagam, R., Pai, S., Murugesan, G., Varadavenkatesan, T., Kaviyarasu, K., Selvaraj, R.: Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ. Res. 212, 113274 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. Yener, J., Kopac, T., Dogu, G., Dogu, T.: Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and Amberlite. J. Coll. Interf. Sci. 294, 255–264 (2006)

    Article  CAS  Google Scholar 

  7. Amenaghawon, A.N., Anyalewechi, C.L., Darmokoesoemo, H., Kusuma, H.S.: Hydroxyapatite-based adsorbents: applications in sequestering heavy metals and dyes. J. Environ. Manage. 302, 113989 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. Yener, J., Kopac, T., Dogu, G., Dogu, T.: Batch adsorber rate analysis of methylene blue on amberlite and clinoptilolite. Sep. Sci. Technol. 41, 1857–1879 (2006)

    Article  CAS  Google Scholar 

  9. Yener, J., Kopac, T., Dogu, G., Dogu, T.: Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon. Chem. Eng. J. 144, 400–406 (2008)

    Article  CAS  Google Scholar 

  10. Kopac, T., Sulu, E., Toprak, A.: Effect of KOH treatment on bituminous coal for the effective removal of basic blue 41 dye from aqueous solutions. Desalin. Water Treat. 57, 29007–29018 (2016)

    Google Scholar 

  11. Hassan, M.M., Carr, C.M.: A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209, 201–219 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. Kopac, T., Sulu, E.: Comparison of adsorption behavior of basic red 46 textile dye on various activated carbons obtained from Zonguldak coal. J. Fac. Eng. Archit. Gazi Univ. 34(3), 1227–1240 (2019)

    Google Scholar 

  13. Wang, R., Shi, X., Zhang, Z., Xiao, A., Sun, S.-P., Cui, Z., Wang, Y.: Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. J. Membr. Sci. 586, 274–280 (2019)

    Article  CAS  Google Scholar 

  14. Saghir, S., Fu, E., Xiao, Z.: Synthesis of CoCu-LDH nanosheets derived from zeolitic imidazole framework-67 (ZIF-67) as an efficient adsorbent for azo dye from waste water. Microporous Mesoporous Mater. 297, 110010 (2020)

    Article  CAS  Google Scholar 

  15. Chaari, I., Medhioub, M., Jamoussi, F., Hamzaoui, A.H.: Acid-treated clay materials (Southwestern Tunisia) for removing sodium leuco-vat dye: characterization, adsorption study and activation mechanism. J Mol. Struc. 1223, 128944 (2021)

    Article  CAS  Google Scholar 

  16. Kopac, T.: Hydrogen storage characteristics of bio-based porous carbons of different origin: a comparative. Rev. Int. J. Energy Res. 45(15), 20497–20523 (2021)

    Article  CAS  Google Scholar 

  17. Yang, J.M.: A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes. J. Colloid Interface Sci. 505, 178–185 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Maranescu, B., Lupa, L., Visa, A.: Heavy metal removal from waste waters by phosphonate metal organic frameworks. Pure Appl. Chem. 90, 35–47 (2018)

    Article  CAS  Google Scholar 

  19. Ahmad, N., Younus, H.A., Chughtai, A.H., Van Hecke, K., Khattak, Z.A., Gaoke, Z., Danish, M., Verpoort, F.: Synthesis of 2D MOF having potential for efficient dye adsorption and catalytic applications. Catal. Sci. Technol. 8, 4010–4017 (2018)

    Article  CAS  Google Scholar 

  20. Nistor, M.A., Muntean, S.G., Maranescu, B., Visa, A.: Phosphonate metal–organic frameworks used as dye removal materials from wastewaters. Appl. Organomet. Chem. 34(11), e5939 (2020)

    Article  CAS  Google Scholar 

  21. Maranescu, B., Visa, A., Maranescu, V.: Co-Vinyl phosphonate electrical properties. Phosphorus Sulfur Silicon Relat. Elem. 190, 902–904 (2015)

    Article  CAS  Google Scholar 

  22. Molavi, H., Hakimian, A., Shojaei, A., Raeiszadeh, M.: Selective dye adsorption by highly water stable metal-organic framework: long term stability analysis in aqueous media. Appl. Surf. Sci. 445, 424–436 (2018)

    Google Scholar 

  23. Yang, J.M., Ying, R.J., Han, C.X., Hu, Q.T., Xu, H.M., Li, J.H., Zhang, W.: Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce(iii) doping. Dalton Trans. 47, 3913–3920 (2018)

    Google Scholar 

  24. Shearan, S.J.I, Stock, N., Emmerling, F., Demel, J., Wright, P.A., Demadis, K.D., Vassaki, M., Costantino, F., Vivani, R., Sallard, S., Ruiz Salcedo, I., Cabeza, A., Taddei, M.: New directions in metal phosphonate and phosphinate chemistry, crystals 9, 270 (2019)

    Google Scholar 

  25. Xanthopoulos, K., Anagnostou, Z., Chalkiadakis, S., Choquesillo-Lazarte, D., Mezei, G., Zaręba, J.K., Zoń, J., Demadis, K.D.: Platonic relationships in metal phosphonate chemistry: ionic metal phosphonates. Curr. Comput.-Aided Drug Des. 9, 301 (2019)

    CAS  Google Scholar 

  26. Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31(15), 5343–5362 (2019)

    Article  CAS  Google Scholar 

  27. Maheria, K., Chudasama, U.: Studies on sorption and elution behaviour of dyes using titanium phosphonate. J. Sci. Ind. Res. 66(12), 1047–1053 (2007)

    CAS  Google Scholar 

  28. Ma, T.Y., Lin, X.Z., Zhang, X.J., Yuan, Z.Y.: High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New. J. Chem. 34, 1209–1216 (2010)

    Article  CAS  Google Scholar 

  29. Ma, T.Y., Yuan, Z.Y.: Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Chemsuschem 4(10), 1407–1419 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Ren, T.Z., Zhu, X.H., Ma, T.Y., Yuan, Z.Y.: Adsorption of methylene blue from aqueous solution by periodic mesoporous titanium phosphonate materials. Adsorp. Sci. Technol. 31(6), 535–548 (2013)

    Article  CAS  Google Scholar 

  31. Bao, S.S., Qin, M.F., Zheng, L.M.: Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chem. Commun. 56, 12090–12108 (2020)

    Article  CAS  Google Scholar 

  32. Demadis, K.D., Stavgianoudaki, N.: Structural diversity in metal phosphonate frameworks: impact on applications. In: Clearfield, A., Demadis, K.D. (eds.) Metal Phosphonate Chemistry: From Synthesis to Applications. Royal Society of Chemistry, London, UK, Chapter 14, pp. 438–492 (2012)

    Google Scholar 

  33. Shimizu, G.K.H., Vaidhyanathan, R., Taylor, J.M.: Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Li, H., Sun, Y., Yuan, Z.Y., Zhu, Y.P., Ma, T.Y.: Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 3222–3227 (2018)

    Article  CAS  Google Scholar 

  35. Zhu, Y.P., Yin, J., Abou-Hamad, E., Liu, X.K., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), 1906368 (2020)

    Article  CAS  Google Scholar 

  36. Zhao, H., Yuan, Z.Y.: Design strategies of transition metal phosphate and phosphonate electrocatalysts for energy-related reactions. Chemsuschem 14, 130–149 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. Rocha, G.M.S.R.O, Santos, T.M., Bispo, C.S.S.: Study of selectivity of metal phosphates and phosphonates in Baeyer–Villiger oxidations. Catal. Lett. 141:100–110 (2011)

    Google Scholar 

  38. Ma, T.Y., Yuan, Z.Y.: Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun. 46, 2325–2327 (2010)

    Article  CAS  Google Scholar 

  39. Ma, T.Y., Lin, X.Z., Yuan, Z.Y.: Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem. 20, 7406–7415 (2010)

    Article  CAS  Google Scholar 

  40. Ma, T.Y., Lin, X.Z., Yuan, Z.Y.: Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J. 16(28), 8487–8494 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Ma, T.Y., Zhang, X.J., Yuan, Z.Y.: High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates. J. Mater Sci. 44, 6775–6785 (2009)

    Article  CAS  Google Scholar 

  42. Dehghanpour, S., Mahmoudi, A., Esbati, F., Rasanani, S.H.: Surfactant-assistant solvo/hydrothermal methods for preparation of nanoscale calcium aminodiphosphonates exhibiting high methylene blue adsorption affinity. Mater. Res. Bull. 47(9), 2126–2134 (2012)

    Article  CAS  Google Scholar 

  43. Gao, C.-Y., Yang, Y., Ai, J., Tian, H.-R., Li, L.-J., Yang, W., Dang, S., Sun, Z.-M.: A Multifunctional MnII phosphonate for rapid separation of methyl orange and electron-transfer photochromism. Chem. Eur. J. 22(33), 11652–11659 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Arumugam, V., Sriram, P., Yen, T.-J., Redhi, G.G., Gengan, R.M.: Nano-material as an excellent catalyst for reducing a series of nitroanilines and dyes: triphosphonated ionic liquid-CuFe2O4-modified boron nitride. Appl. Catal. B: Environ. 222, 99–114 (2018)

    Article  CAS  Google Scholar 

  45. Farrokhi, A., Jafarpour, M., Alipour, M.: Solar-driven advanced oxidation process catalyzed by metal–organic frameworks for water depollution. Polyhedron 170, 325–333 (2019)

    Article  CAS  Google Scholar 

  46. Farrokhi, A., Bivareh, F., Dejbakhshpour, S., Moghaddam, A.Z.: Insight into the photocatalytic properties of phosphonate-based metal–organic frameworks for reduction of Cr (VI) and Synergistic elimination of organic dyes under natural sunlight. Appl. Organomet. Chem. 34(11), e5938 (2020)

    Article  CAS  Google Scholar 

  47. Zhang, F., Yang, C., Li, Y., Chen, M., Hu, S., Chen, H.: The preparation of organophosphorus ligand-modified SBA-15 for effective adsorption of Congo red and Reactive red 2. RSC Adv. 9, 13476–13485 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ai, J., Tian, H.R., Min, X., Wang, Z.C., Sun, Z.M.: A fast and highly selective Congo red adsorption material based on a cadmium-phosphonate network. Dalton Trans. 49(12), 3700–3705 (2020)

    Article  PubMed  Google Scholar 

  49. Pica, M.: Treatment of wastewaters with zirconium phosphate based materials: a review on efficient systems for the removal of heavy metal and dye water pollutants. Molecules 26(8), 2392 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turkan Kopac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kopac, T. (2023). Recent Insights in the Utilization of Metal Phosphonates for Remediation of Dye-Polluted Wastewaters. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_18

Download citation

Publish with us

Policies and ethics