Skip to main content

Phosphates and Phosphonates as Photocatalysts for Environmental and Energy Applications

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Issues that make up the world's agenda and seek urgent solutions, such as the increasing need for energy with the depletion of fossil fuels, environmental pollution, increase in carbon dioxide emission rates, and climate change, encourage using the least damaging chemicals, producing low waste production, and reducing energy consumption to prevent environmental and health hazards. Because of their enormous potency to address global energy and environmental challenges by harnessing solar light energy, semiconductor photocatalysts, a significant class of functional materials, have gained growing interest. In this book chapter, photocatalyst efficiencies of phosphates and phosphonates in environmental and energy applications are examined in detail. Compared to similar photocatalysts, phosphate and phosphonates are seen as excellent alternatives due to their structural diversity, and surface, magnetic, electronic, and catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, C.-C., Li, J.-R., Lv, X.-L., Zhang, Y.-Q., Guo, G.: Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 7(9), 2831–2867 (2014)

    Article  CAS  Google Scholar 

  2. Ameta, R., Solanki, M.S., Benjamin, S., Ameta, S.C.: Photocatalysis. In: Advanced oxidation processes for waste water treatment, pp. 135–175. Elsevier (2018)

    Chapter  Google Scholar 

  3. Chen, L., Ren, J.-T., Yuan, Z.-Y.: Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting. Green Chem (2022)

    Google Scholar 

  4. Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31(15), 5343–5362 (2019)

    Article  CAS  Google Scholar 

  5. Mills, A., Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem 108(1), 1–35 (1997)

    Article  CAS  Google Scholar 

  6. Lin, R., Ding, Y.: A review on the synthesis and applications of mesostructured transition metal phosphates. Materials 6(1), 217–243 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharma, M., Nigam, S., Joshi, M.: Design and synthesis of nanostructured photocatalysts for water remediation. In: Green Photocatalytic Semiconductors, pp. 49–74. Springer (2022)

    Chapter  Google Scholar 

  8. Gupta, J., Singhal, P., Rattan, S.: Polymer nanocomposite films based on two-dimensional materials for photocatalytic applications. In: Green Photocatalytic Semiconductors, pp. 111–143. Springer (2022)

    Chapter  Google Scholar 

  9. Lv, X.W., Weng, C.C., Zhu, Y.P., Yuan, Z.Y.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small 17(22), 2005304 (2021)

    Article  CAS  Google Scholar 

  10. Baykan, D., Oztas, N.A.: Synthesis and characterization of iron orthophosphate by solution combustion method. Mater. Res. Bull. 47(12), 4013–4016 (2012)

    Article  CAS  Google Scholar 

  11. Baykan, D., Oztas, N.A.: Synthesis of iron orthophosphate catalysts by solution and solution combustion methods for the hydroxylation of benzene to phenol. Mater. Res. Bull. 64, 294–300 (2015)

    Article  CAS  Google Scholar 

  12. Mimouni, I., Yahya, M., Bouziani, A., Naciri, Y., Maarouf, F.-E., El Belghiti, M.A., El Azzouzi, M.: Iron phosphate for photocatalytic removal of Ibuprofen from aqueous media under sun-like irradiation. J. Photochem. Photobiol., A 433, 114170 (2022)

    Article  CAS  Google Scholar 

  13. Moradi, Z., Jahromi, S.Z., Ghaedi, M.: Design of active photocatalysts and visible light photocatalysis. In: Interface Science and Technology, pp. 557–623. Elsevier (2021)

    Google Scholar 

  14. Li, X., Xu, P., Chen, M., Zeng, G., Wang, D., Chen, F., Tang, W., Chen, C., Zhang, C., Tan, X.: Application of silver phosphate-based photocatalysts: barriers and solutions. Chem. Eng. J. 366, 339–357 (2019)

    Article  CAS  Google Scholar 

  15. Zhang, S., Gu, X., Zhao, Y., Qiang, Y.: Effect of annealing temperature and time on structure, morphology and visible-light photocatalytic activities Ag3PO4 microparticles. Mater. Sci. Eng., B 201, 57–65 (2015)

    Article  CAS  Google Scholar 

  16. Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., Xiong, J.: Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355, 921–929 (2015)

    Article  CAS  Google Scholar 

  17. Cui, H., Yang, X., Gao, Q., Liu, H., Li, Y., Tang, H., Zhang, R., Qin, J., Yan, X.: Facile synthesis of graphene oxide-enwrapped Ag3PO4 composites with highly efficient visible light photocatalytic performance. Mater. Lett. 93, 28–31 (2013)

    Article  CAS  Google Scholar 

  18. Pan, J., Chi, C., You, M., Jiang, Z., Zhao, W., Zhu, M., Song, C., Zheng, Y., Li, C.: The three dimensional Z-scheme Ag3PO4/Ag/MoS2/TiO2 nano-heterojunction and its sunlight photocatalytic performance enhancement. Mater. Lett. 227, 205–208 (2018)

    Article  CAS  Google Scholar 

  19. Shan, P., Niu, C., Huang, D., Zeng, G., Zhang, H.: Facile synthesis of Ag/AgCl/BiPO 4 plasmonic photocatalyst with significantly enhanced visible photocatalytic activity and high stability. RSC Adv. 5(108), 89105–89112 (2015)

    Article  CAS  Google Scholar 

  20. Gurbani, N., Choudhary, R.J., Phase, D.M., Marumoto, K., Liu, R.-S., Chouhan, N.: Graphene oxide@ nickel phosphate nanocomposites for photocatalytic hydrogen production. Chem. Eng. J. Adv. 6, 100105 (2021)

    Article  CAS  Google Scholar 

  21. Samal, A., Swain, S., Manju, U., Das, D.P.: Hydrogen photosynthesis through schottky junction of RGO-NiPO and the perspective of the mechanism. ACS Sustain. Chem. & Eng. 7(11), 10052–10063 (2019)

    Article  CAS  Google Scholar 

  22. Samal, A., Swain, S., Satpati, B., Das, D.P., Mishra, B.K.: 3 D Co3 (PO4) 2–reduced graphene oxide flowers for photocatalytic water splitting: a type II staggered heterojunction system. Chemsuschem 9(22), 3150–3160 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Samal, A., Das, D., Nanda, K., Mishra, B., Das, J., Dash, A.: Reduced graphene oxide–Ag3PO4 heterostructure: a direct Z‐scheme photocatalyst for augmented photoreactivity and stability. Chem.–An Asian J. 11(4), pp. 584–595 (2016)

    Google Scholar 

  24. Zhu, Y.-P., Ren, T.-Z., Yuan, Z.-Y.: Insights into mesoporous metal phosphonate hybrid materials for catalysis. Catal. Sci. Technol. 5(9), 4258–4279 (2015)

    Article  CAS  Google Scholar 

  25. Zhu, Y.-P., Ma, T.-Y., Liu, Y.-L., Ren, T.-Z., Yuan, Z.-Y.: Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg. Chem. Front. 1(5), 360–383 (2014)

    Article  CAS  Google Scholar 

  26. Ma, T.Y., Yuan, Z.Y.: Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Chemsuschem 4(10), 1407–1419 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X.-J., Ma, T.-Y., Yuan, Z.-Y.: Titania–phosphonate hybrid porous materials: preparation, photocatalytic activity and heavy metal ion adsorption. J. Mater. Chem. 18(17), 2003–2010 (2008)

    Article  CAS  Google Scholar 

  28. Ma, T.Y., Lin, X.Z., Yuan, Z.Y.: Cubic mesoporous titanium phosphonates with multifunctionality. Chem.–A European J. 16(28), pp. 8487–8494 (2010)

    Google Scholar 

  29. Dutta, A., Patra, A.K., Bhaumik, A.: Porous organic–inorganic hybrid nickel phosphonate: adsorption and catalytic applications. Microporous Mesoporous Mater. 155, 208–214 (2012)

    Article  CAS  Google Scholar 

  30. Wang, J., Zhang, R., Liu, Y., Wang, Z., Wang, P., Zheng, Z., Qin, X., Zhang, X., Dai, Y., Huang, B.: Two transition metal phosphonate photocatalysts for H 2 evolution and CO 2 reduction. Chem. Commun. 54(52), 7195–7198 (2018)

    Article  CAS  Google Scholar 

  31. Ozer, D., Tunca, E.T.: Design and construction of MOF nanomaterials. In: Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage, pp. 35–65. Elsevier

    Google Scholar 

  32. Salcedo-Abraira, P., Vilela, S.M., Babaryk, A.A., Cabrero-Antonino, M., Gregorio, P., Salles, F., Navalón, S., García, H., Horcajada, P.: Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 14(2), 450–457 (2021)

    Article  CAS  Google Scholar 

  33. Farrokhi, A., Bivareh, F., Dejbakhshpour, S., Moghaddam, A.Z.: Insight into the photocatalytic properties of phosphonate-based metal–organic frameworks for reduction of Cr (VI) and Synergistic elimination of organic dyes under natural sunlight. Appl. Organomet. Chem. 34(11), e5938 (2020)

    Article  CAS  Google Scholar 

  34. Zhu, Y.P., Yin, J., Abou-Hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32(16), 1906368 (2020)

    Article  CAS  Google Scholar 

  35. Xing, W., Yin, S., Tu, W., Liu, G., Wu, S., Wang, H., Kraft, M., Wu, G., Xu, R.: Rational synthesis of amorphous iron-nickel phosphonates for highly efficient photocatalytic water oxidation with almost 100% yield. Angew. Chem. Int. Ed. 59(3), 1171–1175 (2020)

    Article  CAS  Google Scholar 

  36. Chakraborty, D., Shyamal, S., Bhaumik, A.: A new porous Ni-W mixed metal phosphonate open framework material for efficient photoelectrochemical OER. ChemCatChem 12(5), 1504–1511 (2020)

    Article  CAS  Google Scholar 

  37. Zeng, T., Shi, D., Cheng, Q., Liao, G., Zhou, H., Pan, Z.: Construction of novel phosphonate-based MOF/P–TiO 2 heterojunction photocatalysts: enhanced photocatalytic performance and mechanistic insight. Environ. Sci. Nano 7(3), 861–879 (2020)

    Article  CAS  Google Scholar 

  38. Chen, J., Wei, J., Zhang, H., Wang, X., Fu, L., Yang, T.-H.: Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation. Appl. Surf. Sci. 594, 153493 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Ozer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozer, D. (2023). Phosphates and Phosphonates as Photocatalysts for Environmental and Energy Applications. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_13

Download citation

Publish with us

Policies and ethics