Skip to main content

Perovskite Thin Film Growth Techniques

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors
  • 779 Accesses

Abstract

Perovskites are low-cost semiconductors enabling a variety of high-performance optoelectronic applications. The rapid progress made in this field is driven by the development of high-efficiency photovoltaic devices. The perovskite solar cells adapt a thin-film device architecture where a uniform, crystalline thin film is required to deliver high-power conversion efficiency. This chapter will introduce the solution-based thin-film deposition methods that are used for lab-scale solar cell fabrication. Next, we will discuss the current status and challenges of scaling solar cells to solar modules. Solution coating method and chemical vapor deposition will be discussed for perovskite mini-module demonstrations. Finally, we will provide future perspectives of thin-film coating methods for solar panel development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Im, J.-H., et al. (2014). Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials, 2, 081510.

    Article  Google Scholar 

  2. Zhao, P., et al. (2018). Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Advanced Materials, 30, 1802763.

    Article  Google Scholar 

  3. Paek, S., et al. (2017). From nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chemistry of Materials, 29, 3490–3498.

    Article  Google Scholar 

  4. Taylor, A. D., et al. (2021). A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications, 12, 1878.

    Article  Google Scholar 

  5. Huang, H.-H., et al. (2021). A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule, 5, 958–974.

    Article  Google Scholar 

  6. Jeon, N. J., et al. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13, 897–903.

    Article  Google Scholar 

  7. Chen, C., et al. (2021). Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells. Materials Today Physics, 21, 100565.

    Article  Google Scholar 

  8. Szostak, R., et al. (2019). Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: In situ GIWAXS measurements during spin coating. Sustainable Energy & Fuels, 3, 2287–2297.

    Article  Google Scholar 

  9. Chen, C., et al. (2022). Additive engineering in antisolvent for widening the processing window and promoting perovskite seed formation in perovskite solar cells. ACS Applied Materials & Interfaces, 14, 17348–17357.

    Article  Google Scholar 

  10. Kim, Y. Y., et al. (2020). Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 11, 5146.

    Article  Google Scholar 

  11. Kong, X., et al. (2021). Highly reproducible fabrication of perovskite films with an ultrawide antisolvent dripping window for large-scale flexible solar cells. Solar RRL, 5, 2000646.

    Article  Google Scholar 

  12. Nie, W., et al. (2015). High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347, 522–525.

    Article  Google Scholar 

  13. Tsai, H., et al. (2015). Optimizing composition and morphology for large-grain perovskite solar cells via chemical control. Chemistry of Materials, 27, 5570–5576.

    Article  Google Scholar 

  14. Nie, W., et al. (2016). Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 7, 11574.

    Article  Google Scholar 

  15. Tsai, H., et al. (2017). Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Advanced Energy Materials, 7, 1602159.

    Article  Google Scholar 

  16. Nie, W., et al. (2018). Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Advanced Materials, 30, 1703879.

    Article  Google Scholar 

  17. Tsai, H., et al. (2016). High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312–316.

    Article  Google Scholar 

  18. Tsai, H., et al. (2018). Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites. Advanced Materials, 30, 1704217.

    Article  Google Scholar 

  19. Tsai, H., et al. (2020). Critical role of organic spacers for bright 2D layered perovskites light-emitting diodes. Advanced Science, 7, 1903202.

    Article  Google Scholar 

  20. Tsai, H., et al. (2020). A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Science Advances, 6, eaay0815.

    Article  Google Scholar 

  21. Tsai, H., et al. (2018). Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nature Communications, 9, 2130.

    Article  Google Scholar 

  22. Tisdale, J. T., et al. (2020). Methylammonium Lead tribromide single crystal detectors towards robust gamma-ray photon sensing. Advanced Optical Materials, 8, 2000233.

    Article  Google Scholar 

  23. Schlipf, J., et al. (2017). Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scattering methods. Advanced Energy Materials, 7, 1700131.

    Article  Google Scholar 

  24. Chen, A. Z., et al. (2018). Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature Communications, 9, 1336.

    Article  Google Scholar 

  25. Ren, H., et al. (2020). Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 14, 154–163.

    Article  Google Scholar 

  26. Liang, C., et al. (2021). Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 6, 38–45.

    Article  Google Scholar 

  27. Zhang, X., et al. (2017). Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small, 13, 1700611.

    Article  Google Scholar 

  28. Zhang, X., et al. (2018). Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Advanced Energy Materials, 8, 1702498.

    Article  Google Scholar 

  29. Chen, Y., et al. (2020). Strain engineering and epitaxial stabilization of halide perovskites. Nature, 577, 209–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyi Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, CH., Nie, W. (2023). Perovskite Thin Film Growth Techniques. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics