Skip to main content

Perovskite Polycrystalline Film for X-Ray Imaging

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors
  • 800 Accesses

Abstract

X-ray detectors are widely applied in scenarios such as medical imaging and safety inspection. Perovskite polycrystalline films (PPFs) have vast practical prospects due to the feasibility of large-area production on thin-film transistor (TFT) panels in comparison to their single-crystal counterparts. In this chapter, the current progresses, device figures of merit, and specific topics of TFT-integrated PPF X-ray detectors are reviewed. Firstly, the booming developments of PPF TFT imager are overviewed. Secondly, the figures of merit for perovskite X-ray detectors such as the sensitivity, detection limit, and dark current are discussed. Thirdly, specific topics regarding the film thickness, blocking interfaces, and measurement protocols are addressed. Finally, an outlook of the current challenges pending to be tackled for commercialized applications is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayala-Domínguez, L., & Brandan, M. E. (2018). Quantification of tumor angiogenesis with contrast-enhanced X-ray imaging in preclinical studies: A review. Biomedical Physics & Engineering Express, 4(6), 062001.

    Article  Google Scholar 

  2. Takeda, T., et al. (1998). Phase-contrast X-ray CT image of breast tumor. Journal of Synchrotron Radiation, 5(3), 1133–1135.

    Article  Google Scholar 

  3. Neitzel, U. (2005). Status and prospects of digital detector technology for CR and DR. Radiation Protection Dosimetry, 114(1–3), 32–38.

    Article  Google Scholar 

  4. Goldman, L. W. (2007). Principles of CT and CT technology. Journal of Nuclear Medicine Technology, 35(3), 115–128.

    Article  Google Scholar 

  5. Bigas, M., et al. (2006). Review of CMOS image sensors. Microelectronics Journal, 37(5), 433–451.

    Article  Google Scholar 

  6. Mayo, S. C., Stevenson, A. W., & Wilkins, S. W. (2012). In-line phase-contrast X-ray imaging and tomography for materials science. Materials, 5(5), 937–965.

    Article  Google Scholar 

  7. Liu, X., et al. (2016). Highly photosensitive dual-gate a-Si:H TFT and array for low-dose flat-panel X-ray imaging. IEEE Photonics Technology Letters, 28(18), 1952–1955.

    Article  Google Scholar 

  8. Antonuk, L., et al. (1994). High-resolution, high-frame-rate, flat-panel TFT array for digital X-ray imaging. Medical Imaging 1994. Vol. 2163. SPIE.

    Google Scholar 

  9. Huang, H., & Abbaszadeh, S. (2020). Recent developments of amorphous selenium-based X-ray detectors: A review. IEEE Sensors Journal, 20(4), 1694–1704.

    Article  Google Scholar 

  10. Howansky, A., et al. (2019). Comparison of CsI:Tl and Gd2O2S:Tb indirect flat panel detector x-ray imaging performance in front- and back-irradiation geometries. Medical Physics, 46(11), 4857–4868.

    Article  Google Scholar 

  11. Cuzin, M. (1987). Some new developments in the field of high atomic number materials. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 253(3), 407–417.

    Article  Google Scholar 

  12. Kleppinger, J. W., et al. (2022). Influence of carrier trapping on radiation detection properties in CVD grown 4H-SiC epitaxial layers with varying thickness up to 250 μm. Journal of Crystal Growth, 583, 126532.

    Article  Google Scholar 

  13. Deumel, S., et al. (2021). High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nature Electronics, 4(9), 681–688.

    Article  Google Scholar 

  14. Kim, Y. C., et al. (2017). Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 550(7674), 87–91.

    Article  Google Scholar 

  15. Jang, J., et al. (2021). Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites. Advanced Materials, 33(30), 2008539.

    Article  Google Scholar 

  16. Datta, A., Zhong, Z., & Motakef, S. (2020). A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Scientific Reports, 10(1), 20097.

    Article  Google Scholar 

  17. Jia, S., et al. (2022). Ion-accumulation-induced charge tunneling for high gain factor in P–I–N-structured perovskite CH3NH3PbI3 X-ray detector. Advanced Materials Technologies, 2100908.

    Google Scholar 

  18. Shrestha, S., et al. (2017). High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 11(7), 436–440.

    Article  Google Scholar 

  19. Xiao, Y., et al. (2021). Grain and stoichiometry engineering for ultra-sensitive perovskite X-ray detectors. Journal of Materials Chemistry A, 9(45), 25603–25610.

    Article  Google Scholar 

  20. Hu, M., et al. (2020). Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Applied Materials & Interfaces, 12(14), 16592–16600.

    Article  Google Scholar 

  21. Xia, M., et al. (2022). Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Advanced Functional Materials, 32(16), 2110729.

    Article  Google Scholar 

  22. Zhao, J., et al. (2020). Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nature Photonics, 14(10), 612–617.

    Article  Google Scholar 

  23. Zhou, Y., et al. (2021). Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Science Advances, 7(36), eabg6716.

    Article  Google Scholar 

  24. He, X., et al. (2022). Quasi-2D perovskite thick film for X-ray detection with low detection limit. Advanced Functional Materials, 32(7), 2109458.

    Article  MathSciNet  Google Scholar 

  25. Zhang, D., et al. (2013). High-responsivity GeSn short-wave infrared p-i-n photodetectors. Applied Physics Letters, 102(14), 141111.

    Article  Google Scholar 

  26. (1978). Nomenclature, symbols, units and their usage in spectrochemical analysis—II. Data interpretation Analytical chemistry division. Spectrochimica Acta Part B: Atomic Spectroscopy, 33(6), 241–245.

    Google Scholar 

  27. Jones, R. C. (1960). Proposal of the detectivity D** for detectors limited by radiation noise†. Journal of the Optical Society of America, 50(11), 1058–1059.

    Article  Google Scholar 

  28. Pan, L., et al. (2021). Determination of X-ray detection limit and applications in perovskite X-ray detectors. Nature Communications, 12(1), 5258.

    Article  Google Scholar 

  29. Wu, H., et al. (2021). Metal halide perovskites for X-ray detection and imaging. Matter, 4(1), 144–163.

    Article  Google Scholar 

  30. Simone, G., et al. (2020). Organic photodetectors and their application in large area and flexible image sensors: The role of dark current. Advanced Functional Materials, 30(20), 1904205.

    Article  Google Scholar 

  31. Sones, R. A., & Barnes, G. T. (1984). A method to measure the MTF of digital X-ray systems. Medical Physics, 11(2), 166–171.

    Article  Google Scholar 

  32. Viallefont-Robinet, F., et al. (2018). Comparison of MTF measurements using edge method: towards reference data set. Optics Express, 26(26), 33625–33648.

    Article  Google Scholar 

  33. Wang, J., & Fleischmann, D. (2018). Improving spatial resolution at CT: Development, benefits, and pitfalls. Radiology, 289(1), 261–262.

    Article  Google Scholar 

  34. Michail, C., et al. (2016). Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1: 2015 International Standard. Radiation Measurements, 94, 8–17.

    Article  Google Scholar 

  35. Moy, J.-P. (2000). Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: Is the MTF a relevant parameter? Medical Physics, 27(1), 86–93.

    Article  Google Scholar 

  36. Zhao, W., DeCrescenzo, G., & Rowlands, J. (2002). Investigation of lag and ghosting in amorphous selenium flat-panel X-ray detectors. Medical Imaging. Vol. 4682. 2002: SPIE.

    Google Scholar 

  37. Mail, N., et al. (2008). An empirical method for lag correction in cone-beam CT. Medical Physics, 35(11), 5187–5196.

    Article  Google Scholar 

  38. Adachi, S., et al. (2000). Experimental evaluation of a-Se and CdTe flat-panel X-ray detectors for digital radiography and fluoroscopy. Medical Imaging. Vol. 3977. 2000: SPIE.

    Google Scholar 

  39. Gao, Y., et al. (2021). Ultrathin and ultrasensitive direct X-ray detector based on heterojunction phototransistors. Advanced Materials, 33(32), 2101717.

    Article  Google Scholar 

  40. Demchyshyn, S., et al. (2020). Designing ultraflexible perovskite X-ray detectors through interface engineering. Advanced Science, 7(24), 2002586.

    Article  Google Scholar 

  41. Park, N.-G., & Zhu, K. (2020). Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 5(5), 333–350.

    Article  Google Scholar 

  42. Deumel, S., et al. (2022). Organometal halide perovskite imager: A comparison 1.5 years after fabrication. SPIE Medical Imaging. Vol. 12031. SPIE.

    Google Scholar 

  43. Keyes, R. J. (2013). Optical and infrared detectors. Vol. 19. Springer Science & Business Media.

    Google Scholar 

  44. Peng, J., et al. (2022). Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging. Matter, 5(7), 2251–2264.

    Article  Google Scholar 

  45. Boudry, J. M., & Antonuk, L. E. (1996). Radiation damage of amorphous silicon, thin-film, field-effect transistors. Medical Physics, 23(5), 743–754.

    Article  Google Scholar 

  46. Park, S., et al. (2021). Effect of X-ray irradiation on a-IGZO and LTPS thin-film transistors for radiography applications. Applied Surface Science, 550, 149237.

    Article  Google Scholar 

  47. Zentai, G. (2011). Comparison of CMOS and a-Si flat panel imagers for X-ray imaging. In 2011 IEEE international conference on imaging systems and techniques.

    Google Scholar 

  48. Marsh, O. J., & Viswanathan, C. R. (1967). Space-charge-limited current of holes in silicon and techniques for distinguishing double and single injection. Journal of Applied Physics, 38(8), 3135–3144.

    Article  Google Scholar 

  49. Johanson, R. E., et al. (1998). Metallic electrical contacts to stabilized amorphous selenium for use in X-ray image detectors. Journal of Non-Crystalline Solids, 227–230, 1359–1362.

    Article  Google Scholar 

  50. Pan, L., et al. (2020). Comparison of Zr, Bi, Ti, and Ga as metal contacts in inorganic perovskite CsPbBr3 gamma-ray detector. IEEE Transactions on Nuclear Science, 67(10), 2255–2262.

    Article  Google Scholar 

  51. He, Y., et al. (2018). High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 9(1), 1609.

    Article  MathSciNet  Google Scholar 

  52. Funk, H., et al. (2020). In situ TEM monitoring of phase-segregation in inorganic mixed halide perovskite. The Journal of Physical Chemistry Letters, 11(13), 4945–4950.

    Article  Google Scholar 

  53. Zimmermann, E., et al. (2016). Characterization of perovskite solar cells: Towards a reliable measurement protocol. APL Materials, 4(9), 091901.

    Article  Google Scholar 

  54. He, Y., et al. (2022). Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-ray detection. Advanced Functional Materials, 32(24), 2112925.

    Article  MathSciNet  Google Scholar 

  55. He, Y., et al. (2021). CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nature Photonics, 15(1), 36–42.

    Article  Google Scholar 

  56. Moy, J.-P. (2000). Recent developments in X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 442(1), 26–37.

    Article  Google Scholar 

  57. Roch, A. L., et al. (2020). Comparison of X-ray and electron radiation effects on dark current non-uniformity and fluctuations in CMOS image sensors. IEEE Transactions on Nuclear Science, 67(1), 268–277.

    Article  Google Scholar 

  58. Badea, C., et al. (2022). Co-clinical photon counting CT research for multi-contrast imaging. In Seventh international conference on image formation in X-ray computed tomography (ICIFXCT 2022). Vol. 12304. SPIE.

    Google Scholar 

  59. Schroeder, C., et al. (2004). Lag measurement in an active matrix flat-panel imager. Medical Physics, 31(5), 1203–1209.

    Article  Google Scholar 

  60. Oppelt, A. (2006). Imaging systems for medical diagnostics: Fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. Wiley.

    Google Scholar 

  61. Cammarata, M., et al. (2009). Chopper system for time resolved experiments with synchrotron radiation. Review of Scientific Instruments, 80(1), 015101.

    Article  Google Scholar 

  62. Förster, D. F., et al. (2015). Phase-locked MHz pulse selector for X-ray sources. Optics Letters, 40(10), 2265–2268.

    Article  Google Scholar 

  63. Zefreh, K. Z., Welford, F. M., & Sijbers, J. (2016). Investigation on the effect of exposure time on scintillator afterglow for ultra-fast tomography acquisition. Journal of Instrumentation, 11(12), C12014.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the National Key Research and Development Project (2021YFB3201000), National Natural Science Foundation of China (62101200, 62074066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangda Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, H., Liu, J., Niu, G. (2023). Perovskite Polycrystalline Film for X-Ray Imaging. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics