Skip to main content

Perovskite Materials: Application Perspective

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors

Abstract

Recent advances in perovskite materials have resulted in impressive gains in solar cell, neutron, X-ray, and gamma ray detection performance. This chapter reviews recent advancements in perovskite technology and contrasts them against state-of-the-art semiconductor technology, as well as conventional scintillator technologies. A new startup company Actinia is described as a case study. The focus in this chapter in on application side and growing perovskite material ecosystem.

Perovskite crystals were discovered 150 years ago but received widespread attention only in the last 5–10 years. The technology development was initially driven by solar cell industry, but X-ray detection capability has been recognized very recently as possible to adopt. The main reason for that possible change of direction is sensitivity to moisture so it is much easier to handle that in X-ray detection equipment than in solar panels.

Many papers claim good X-ray performance, but they are usually achieved in thin films; so at the present moment, this technology is not really a threat to traditional semiconductor devices. In addition, perovskites do not perform well under high-flux conditions, creating an additional barrier to entry for applications like computed tomography (CT).

Still, due to their unique material properties, perovskites will find some entry points where low cost, ease of manufacture, and mechanical flexibility are attractive. They will likely displace some low-end scintillator solutions and perhaps with time applications like mammography/breast imaging where flexible shape will be of premium.

It is not possible to predict how this technology will move forward as every day a new perovskite paper reaches research journals, so this chapter offers a sampling perspective in 2022. Things can change quickly as perovskite materials have already and will attract even more research funding and attention of government and big players in our industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pan, L., Kandlakunta, P., & Cao, L. R. (2021). Inorganic perovskite CsPbBr3 gamma ray detector. In K. Iniewski (Ed.), Advanced materials for radiation detection. Springer.

    Google Scholar 

  2. Andričević, P. (2021). The impact of detection volume on hybrid halide perovskite-based radiation detectors. In K. Iniewski (Ed.), Advanced materials for radiation detection. Springer.

    Google Scholar 

  3. Manuel, Q.-L., Leunam, F.-I., Reyes-Banda, M. G., & Caraveo-Frescas, J. A. (2021). Inorganic halide perovskite thin films for neutron detection. In K. Iniewski (Ed.), Advanced materials for radiation detection. Springer.

    Google Scholar 

  4. Li, F., Yang, T., & Zheng, R. (2021). Radiation detection technologies enabled by halide perovskite single crystals. In K. Iniewski (Ed.), Advanced materials for radiation detection. Springer.

    Google Scholar 

  5. Gedda, M., Faber, H., Petridis, K., & Anthopoulos, T. D. (2021). Metal halide perovskites for high energy radiation detection. In K. Iniewski (Ed.), Advanced materials for radiation detection. Springer.

    Google Scholar 

  6. Wolszczak, W. W., Carroll, D. L., & Williams, R. T. (2022). Toward perovskite-related scintillators with necessary stokes shift and thickness for hard X-ray radiography and gamma spectroscopy. In K. Iniewski (Ed.), Advanced X-ray detector technologies design and applications. Springer.

    Google Scholar 

  7. Nie, W., Tsai, H., Liu, F., Shrestha, S., & Tisdale, J. (2022). Emerging lead-halide perovskite semiconductor for solid-state detectors. In K. Iniewski (Ed.), Advanced X-ray detector technologies design and applications. Springer.

    Google Scholar 

  8. Jena, A. K., Kulkarni, A., & Miyasaka, T. (2019). Halide perovskite photovoltaics: Background, status, and future prospects. Chemical Reviews, 119, 3036–3103.

    Article  Google Scholar 

  9. Wells, H. L. (1893). Über die Cäsium- und Kalium-Bleihalogenide. Zeitschrift für Anorganische Chemie, 3, 195–210.

    Article  Google Scholar 

  10. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050–6051.

    Article  Google Scholar 

  11. https://www.semiconductor-today.com/news_items/2015/jul/idtechx_160715.shtml

  12. Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., & Seok, S. I. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598, 444–450.

    Article  Google Scholar 

  13. https://site.ieee.org/sb-uol/x-ray-detection-may-be perovskites killer-app/.

  14. Haruta, Y., Kawakami, M., Nakano, Y., Kundu, S., Wada, S., Ikenoue, T., Miyake, M., Hirato, T., & Saidaminov, M. I. (2022). Scalable fabrication of metal halide perovskites for direct X-ray flat panel detectors: A perspective. Chemistry of Materials, 34, 5323–5333.

    Article  Google Scholar 

  15. Wang, H.-C., Bao, Z., Tsai, H.-Y., Tang, A.-C., & Liu, R.-S. (2018). Perovskite quantum dots and their application in light-emitting diodes. Small, 14, 1702433.

    Article  Google Scholar 

  16. Hansen, K., Datta, A., & Motakef, S. Perovskite semiconductor X-ray detectors for medical and synchrotron applications (#1116). https://www.eventclass.org/contxt_ieee2021/

  17. Datta, A., Hansen, K., Pinaroli, G., Carini, G., Deptuch, G., O’Connor, P., Herrmann, S., & Motakef, S. Perovskite X-ray detectors for high spatial resolution synchrotron imaging (#579). https://www.eventclass.org/contxt_ieee2021

  18. Mayén Guillén, J. A., Baussens, O., Chapran, M., Verilhac, J.-M., Gros D’Aillon, E., Ibanez, A., & Zaccaro, J. MAPb(Br1-xClx)3 perovskite materials for direct X-ray detection (#490). https://www.eventclass.org/contxt_ieee2021/

  19. Ciavatti, A., Ledee, F., Verdi, M., Basiricò, L., & Fraboni, B. Ultra-stable and robust response to X-Rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate (#358). https://www.eventclass.org/contxt_ieee2021/

  20. Bennett, S. H., Alghamdi, S. S., Braddock, I. H., O’Neill, J. G., Liu, X., Zhang, B., & Sellin, P. J. Charge transport optimisation of FA lead halide perovskite radiation detectors (#556). https://www.eventclass.org/contxt_ieee2021/

  21. Alghamdi, S. S., Bennett, S. H., Braddock, I. H., Gibbard, H. J., O’Neill, J. G., Moss, R., & Sellin, P. J. Large area polycrystalline perovskite X-ray detectors (#618). https://www.eventclass.org/contxt_ieee2021/

  22. Murgulov, V., Schweinle, C., Daub, M., Hillebrecht, H., & Fiederle, M. Growth and characterisation of Cs2AgBiBr6 double perovskite single crystals for application in radiation sensing (#489). https://www.eventclass.org/contxt_ieee2021/

  23. Tan, R., Charest, J., Busch, C., Dryzhakov, B., Higgins, K., Ahmadi, M., Hu, B., & Lukosi, E. Advanced techniques for gamma ray spectroscopy with metal halide perovskites (#658). https://www.eventclass.org/contxt_ieee2021/

  24. Boschetti, B., Toufanian, R., Datta, A., & Motakef, S. Solution growth and detector performance of centimeter-scale lead halide perovskites (#1067). https://www.eventclass.org/contxt_ieee2021/

  25. Islam, M. M., Niraula, M., Nakashima, Y., Matsubara, T., Hirano, S., Takagi, Y., & Yasuda, K. Growth and characterization of single-crystal lead halide perovskite for X-ray detector application (#182). https://www.eventclass.org/contxt_ieee2021/

  26. Brynza, M., Belas, E., Pipek, J., Betušiak, M., Praus, P., Ahmadi, M., Grill, R., & Musiienko, A. Unravelling the electronic and charge transport properties in organic perovskites (#254). https://www.eventclass.org/contxt_ieee2021/

  27. Stoumpos, C. C., Malliakas, C. D., Peters, J. A., Liu, Z. F., Sebastian, M., Im, J., Chasapis, T. C., Wibowo, A. C., Chung, D. Y., Freeman, A. J., Wessels, B. W., & Kanatzidis, M. G. (2013). Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Crystal Growth & Design, 13(7), 2722–2727.

    Article  Google Scholar 

  28. He, Y. H., Matei, L., Jung, H. J., McCall, K. M., Chen, M., Stoumpos, C. C., Liu, Z. F., Peters, J. A., Chung, D. Y., Wessels, B. W., Wasielewski, M. R., Dravid, V. P., Burger, A., & Kanatzidis, M. G. (2018). High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 9, 8.1609.

    Google Scholar 

  29. He, Y. H., Liu, Z. F., McCall, K. M., Lin, W. W., Chung, D. Y., Wessels, B. W., & Kanatzidis, M. G. (2019). Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 922, 217–221.

    Article  Google Scholar 

  30. He, Y. H., Petryk, M., Liu, Z. F., Chica, D. G., Hadar, I., Leak, C., Ke, W. J., Spanopoulos, I., Lin, W. W., Chung, D. Y., Wessels, B. W., He, Z., & Kanatzidis, M. G. (2021). CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy gamma-rays. Nature Photonics, 15, 36–42.

    Article  Google Scholar 

  31. Zhou, Y., Chen, J., Bakr, O. M., & Mohammed, O. F. (2021). Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Letters, 6, 739–768.

    Article  Google Scholar 

  32. Kang, J., & Wang, L.-W. (2017). High defect tolerance in lead halide perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8, 489–493.

    Article  Google Scholar 

  33. Meggiolaro, D., Motti, S. G., Mosconi, E., Barker, A. J., Ball, J., Perini, C. A. R., Deschler, F., Petrozza, A., & De Angelis, F. (2018). Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 11, 702–713.

    Article  Google Scholar 

  34. Saidaminov, M. I., Abdelhady, A. L., Maculan, G., & Bakr, O. M. (2015). Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chemical Communications, 51, 17658–17661.

    Article  Google Scholar 

  35. Saidaminov, M. I., Abdelhady, A. L., Murali, B., Alarousu, E., Burlakov, V. M., Peng, W., Dursun, I., Wang, L., He, Y., Maculan, G., Goriely, A., Tom, W., Mohammed, O. F., & Bakr, O. M. (2015). High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 6, 7586.

    Article  Google Scholar 

  36. Kadro, J. M., Nonomura, K., Gachet, D., Grätzel, M., & Hagfeldt, A. (2015). A facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Scientific Reports, 5, 11654.

    Article  Google Scholar 

  37. Liu, Y., Yang, Z., Cui, D., Ren, X., Sun, J., Liu, X., Zhang, J., Wei, Q., Fan, H., Fengyang, Y., Zhang, X., Zhao, C., & Liu, S. F. (2015). Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: Growth and characterization. Advanced Materials, 27, 5176–5183.

    Article  Google Scholar 

  38. Zhang, T., Yang, M., Benson, E. E., Li, Z., van de Lagemaat, J., Luther, J. M., Yan, Y., Zhu, K., & Zhao, Y. (2015). A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1−xClx)3. Chemical Communications, 51, 7820–7823.

    Article  Google Scholar 

  39. Li, J., Zeyao Han, Y. G., Dejian, Y., Liu, J., Dawei, H., Xiaobao, X., & Zeng, H. (2021). Perovskite single crystals: Synthesis, optoelectronic peroperties, and application. Advance Functional Materials, 31, 2008684.

    Article  Google Scholar 

  40. Song, J., Cui, Q., Li, J., Jiayue, X., Wang, Y., Leimeng, X., Xue, J., Dong, Y., Tian, T., Sun, H., & Zeng, H. (2017). Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible–infrared dual-modal photodetectors. Advanced Optical Materials, 5, 1700157.

    Article  Google Scholar 

  41. Haodi, W., Ge, Y., Niu, G., & Tang, J. (2021). Metal halide perovskites for X-ray detection and imaging. Matter, 4, 144–163.

    Article  Google Scholar 

  42. Turedi, B., Lintangpradipto, M. N., Sandberg, O. J., Yazmaciyan, A., Matt, G. J., Alsalloum, A. Y., Almasabi, K., Sakhatskyi, K., Yakunin, S., Zheng, X., Naphade, R., Nematulloev, S., Yeddu, V., Baran, D., Armin, A., Saidaminov, M. I., Kovalenko, M. V., Mohammed, O. F., & Bakr, O. M. (2022). Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length. Advanced Materials, 34, 2202390.

    Article  Google Scholar 

  43. Wei, H., DeSantis, D., Wei, W., Deng, Y., Guo, D., Savenije, T. J., Cao, L., & Huang, J. (2017). Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 16, 826–823.

    Article  Google Scholar 

  44. He, Y., Petryk, M., Liu, Z., Chica, D. G., Hadar, I., Leak, C., Ke, W., Spanopoulos, I., Lin, W., Chung, D. Y., Wessels, B. W., He, Z., & Kanatzidis, M. G. (2020). CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nature Photonics, 15, 36. https://doi.org/10.1038/s41566-020-00727-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iniewski, K.(., Nie, W., Haruta, Y., Saidaminov, M. (2023). Perovskite Materials: Application Perspective. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics