Skip to main content

Evaluation of the Solar Organic Rankine Cycle with Different Working Fluids

  • Chapter
  • First Online:
Congress on Research, Development, and Innovation in Renewable Energies

Abstract

The growing demand for electrical energy, adding to the depletion of the ozone layer, has aroused interest in renewable energies. An inexhaustible energy source is the Sun, which theoretically can satisfy the global energy demand if the appropriate technology is developed to harness it. For example, the Rankine cycle is considered the best thermodynamic cycle for converting solar thermal energy into electrical energy. In this study, the variation of the thermal efficiency of a regenerative solar organic Rankine cycle (SORC) is evaluated, coupling a parabolic trough-type solar collector, concerning the evaporation temperature, condensation temperature, and efficiency of the recuperator. The simulation of the SORC is carried out using the Octave and CoolProp software and 37 working fluids. From the said simulation, it is shown that the increase in the evaporation temperature and the decrease in the condensation temperature favorably affect the system’s efficiency. On the other hand, varying the efficiency of the recuperator does not represent a significant change in the efficiency of the SORC. Among the working fluids that present higher efficiencies are hydrocarbons: n-Dodecane (10.235%), n-Octane (10.204%), n-Heptane (10.172%), and siloxanes: MDM (10.122%), MD2M (10.131%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Arjunan, J.H. Gnana Muthu, S. Radha, S.L. Suryan, A. Selection of working fluids for solar organic Rankine cycle – A review. Int. J. Energy Res., 1–27 (2022)

    Google Scholar 

  2. J.R. Armstead, S.A. Miers, Review of waste heat recovery mechanisms for internal combustion engines. J. Ther. Sci. Eng. Appl. 6(1), 014001 (2014)

    Article  Google Scholar 

  3. O. Badr, S.D. Probert, P.W. O’Callaghan, Selecting a working fluid for a Rankine-cycle engine. Appl. Energy 21(1), 1–42 (1985)

    Article  Google Scholar 

  4. S. Baral, D. Kim, E. Yun, K.C. Kim, Experimental and Thermoeconomic analysis of small-scale Solar Organic Rankine Cycle (SORC) system. Entropy 17(4), 2039–2061 (2015)

    Article  Google Scholar 

  5. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source Thermophysical property library CoolProp. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014)

    Article  Google Scholar 

  6. J. Blanco, D. Alarcón, B. Sánchez, S. Malato, M.I. Maldonado, A. Hublitz, M. Spinnler, Technical comparison of different solar-assisted heat supply systems for a multi-effect seawater distillation unit, in ISES solar world congress, (2003), pp. 14–19

    Google Scholar 

  7. E. Casati, A. Galli, P. Colonna, Thermal energy storage for solar-powered organic Rankine cycle engines. Sol. Energy 96, 205–219 (2013)

    Article  Google Scholar 

  8. Y.A. Çengel, M.A. Boles, Termodinámica, 6th edn. (McGraw-Hill, 2009)

    Google Scholar 

  9. R. Chacartegui, L. Vigna, J.A. Becerra, V. Verda, Analysis of two heat storage integrations for an organic Rankine cycle parabolic trough solar power plant. Energy Convers. Manag. 125, 353–367 (2016)

    Article  Google Scholar 

  10. S. Chatzinikolaou, N. Ventikos, L. Bilgili, U. Celebi, Solar Assisted Organic Rankine Cycle for Power Generation: A Comparative Analysis for Natural Working Fluids (Energy, Transportation and Global Warming, 2016), pp. 883–895

    Google Scholar 

  11. N.B. Desai, S. Bandyopadhyay, Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle. Appl. Therm. Eng. 95, 471–481 (2016)

    Article  Google Scholar 

  12. J.W. Eaton, D. Bateman, S. Hauberg, Gnu octave. GNU Octave (2013)

    Google Scholar 

  13. S.A. Kalogirou, Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30(3), 231–295 (2004)

    Article  Google Scholar 

  14. A.M. Khater, A. Soliman, T.S. Ahmed, I.M. Ismail, Power generation in white cement plants from waste heat recovery using steam-organic combined Rankine cycle. Case Stud. Chem. Environ. Eng. 4, 100138 (2021)

    Article  Google Scholar 

  15. A. Kumar, D. Rakshit, A critical review on waste heat recovery utilization with special focus on Organic Rankine Cycle applications. Cleaner Eng. Technol. 5, 100292 (2021)

    Article  Google Scholar 

  16. J. Li, P. Li, G. Pei, J.Z. Alvi, J. Ji, Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander. Appl. Energy 165, 627–638 (2016)

    Article  Google Scholar 

  17. P.J. Mago, L.M. Chamra, K. Srinivasan, C. Somayaji, An examination of regenerative organic Rankine cycles using dry fluids. Appl. Therm. Eng. 28(8), 998–1007 (2008)

    Article  Google Scholar 

  18. NASA. Data Access Viewer Prediction of Worldwide Energy. https://power.larc.nasa.gov/data-access-viewer/. Last accessed 2022/05/21 (2021)

  19. R. Rayegan, Y.X. Tao, A procedure to select working fluids for solar organic Rankine cycles (ORCs). Renew. Energy 36(2), 659–670 (2011)

    Article  Google Scholar 

  20. SEPCO. Solar Power Advantages and Disadvantages. https://www.sepco-solarlighting.com/blog/solar-power-advantages-and-disadvantages. Last accessed 2022/04/28 (2012)

  21. S.M. Shalaby, M.A. Gadalla, A.R. el Sayed, E.M. Meliha, H.F. Abosheiasha, Aspen plus simulation of a low capacity organic Rankine cycle heated by solar energy. Energy Rep. 8, 416–421 (2022)

    Article  Google Scholar 

  22. SmoWeb. Regenerative Rankine cycle. http://platform.sysmoltd.com/media/tmp/tmpcz6Ksu.png. Last accessed 2022/05/04 (2022)

  23. K. Thurairaja, A. Wijewardane, S. Jayasekara, C. Ranasinghe, Working fluid selection and performance evaluation of ORC. Energy Procedia 156, 244–248 (2019)

    Article  Google Scholar 

  24. R. Touaibi, H. Koten, O. Boydak, Parametric study of an organic Rankine cycle using different fluids. Emerg. Sci. J. 4(2), 122–128 (2020)

    Article  Google Scholar 

  25. C. Tzivanidis, E. Bellos, K.A. Antonopoulos, Energetic and financial investigation of a stand-alone solar-thermal organic Rankine cycle power plant. Energy Convers. Manag. 126, 421–433 (2016)

    Article  Google Scholar 

  26. E.H. Wang, H.G. Zhang, B.Y. Fan, M.G. Ouyang, Y. Zhao, Q.H. Mu, Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 36(5), 3406–3418 (2011)

    Article  Google Scholar 

  27. H. Yu, H. Helland, X. Yu, T. Gundersen, G. Sin, Optimal design and operation of an organic Rankine cycle (ORC) system driven by solar energy with sensible thermal energy storage. Energy Convers. Manag. 244, 114494 (2021)

    Article  Google Scholar 

  28. D. Zhao, S. Deng, L. Zhao, W. Xu, W. Wang, X. Nie, M. Chen, Overview on artificial intelligence in design of organic Rankine cycle. Energy AI 1, 100011 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Herrera-Romero .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1: Classification of Working Fluids (Table 9.8)

Table 9.8 Working fluids used in the SORC simulation

1.2 Appendix 2: Behavior of the Thermodynamic Efficiency of the SORC

Fig. 9.6
3-line graphs of efficiency in percentage versus T subscript evaporation plot increasing lines. They all start at 80 degrees Celsius. The graph represents the lowest number of lines, which is 5.

ηSORC vs. Tevap (a) groups I, III, and VIII, (b) group II, and (c) groups IV-VII

Fig. 9.7
3-line graphs of efficiency in percentage versus efficiency subscript recuperator and T subscript condensation plot increasing lines in graph a and decreasing lines in graphs b and c. In graph a, the line of sulfur dioxide is linear.

ηSORC vs. Tcond (a) groups I, III, and VIII, (b) group II, and (c) groups IV-VII

Fig. 9.8
3-line graphs of efficiency and efficiency subscript S O R C versus efficiency subscript recuperator plots nearly linear lines in graphs b and c and increasing lines except for the linear line of sulfur dioxide in graph a.

ηSORC vs. ηrecup (a) groups I, III, and VIII, (b) group II, and (c) groups IV-VII

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilar-Hipólito, L.P., Morales-Salas, L., Colorado-Garrido, D., Herrera-Romero, J.V. (2023). Evaluation of the Solar Organic Rankine Cycle with Different Working Fluids. In: Espinoza-Andaluz, M., Melo Vargas, E., Santana Villamar, J., Encalada-Dávila, Á. (eds) Congress on Research, Development, and Innovation in Renewable Energies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-26813-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26813-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26812-0

  • Online ISBN: 978-3-031-26813-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics