Skip to main content

Shallow Geothermal Energy Resources and Thermal Impacts in Buenos Aires City, Argentina

  • Chapter
  • First Online:
Congress on Research, Development, and Innovation in Renewable Energies

Abstract

The growth in population and energy requirement is a challenge for stakeholders in huge cities such as Buenos Aires. Sustainably meeting this demand is the goal demanded by society for this new century. Shallow geothermal energy (SGE) is a renewable energy very valuable for air conditioning. However, it is a great unknown. To overcome this initial barrier and make it known, the geothermal potential of the Matanza-Riachuelo Basin, where the City of Buenos Aires is located, were calculated.

To estimate of shallow geothermal potential, it is necessary to define the characteristics and behavior of the aquifers under exploitation. The heat transport equation in porous media was used based on geological and hydrogeological models. The input parameters needed for this estimate were obtained from an exhaustive geological data model and a hydrogeological numerical model for the Matanza-Riachuelo Basin. The required parameters are mainly the groundwater velocity, the lithological description, the thickness, and the thermal ground parameters (volumetric heat capacity, thermal conductivity and thermal dispersivity) of each hydrogeological formation.

As a result, maps of shallow geothermal energy potential and the environmental impact were obtained. The map reflects the viability of the exploitation of SGE in the City of Buenos Aires, showing high values of shallow geothermal potential for a single borehole heat exchanger of 100 m depth (up to 6 kW). The thermal impact into the aquifer is also evaluated as the length of the thermal plume, getting values less than 30 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.estadisticaciudad.gob.ar/eyc/?p=29130 . Consulted on August 10th, 2021

  2. 2.

    https://www.estadisticaciudad.gob.ar/eyc/?p=50330. Consulted on August 11st, 2022.

References

  1. P. J. Chévez, I. Martini, and C. Discoli, “Methodology developed for the construction of an urban-energy diagnosis aimed to assess alternative scenarios: An intra-urban approach to foster cities’ sustainability,” Appl. Energy, vol. 237, pp. 751–778, Mar. 2019, doi: https://doi.org/10.1016/J.APENERGY.2019.01.037

  2. H. Villarroel-Gutierrez, The Argentine electrical sector and its trends toward renewable energies. IEEE Lat. Am. Trans. 17(10), 1625–1636 (2019). https://doi.org/10.1109/TLA.2019.8986440

    Article  Google Scholar 

  3. S. Fuentes, R. Villafafila-Robles, E. Lerner, Composed index for the evaluation of the energy security of power systems: application to the case of argentina. Energies 13(15), 3998 (2020). https://doi.org/10.3390/EN13153998

    Article  Google Scholar 

  4. M.Y. Recalde, The different paths for renewable energies in Latin American countries: The relevance of the enabling frameworks and the design of instruments. Wiley Interdiscip. Rev. Energy Environ. 5(3), 305–326 (2016). https://doi.org/10.1002/WENE.190

    Article  Google Scholar 

  5. M.A. Piragine, S. Shah, A. Coutroubis, Study of potentials and challenges in unconventional oil and gas industry: An Argentinian case study. MATEC Web Conf. 210, 02007 (2018). https://doi.org/10.1051/MATECCONF/201821002007

    Article  Google Scholar 

  6. P. Tunbridge, Global electricity review 2021 Perfil G20. Accessed: Aug. 11, 2021. [Online]. Available: www.ember-climate.org/global-electricity-review-2021

  7. V. Somogyi, V. Sebestyén, G. Nagy, Scientific achievements and regulation of shallow geothermal systems in six European countries – A review. Renew. Sust. Energ. Rev. 68, 1–19 (2016). https://doi.org/10.1016/j.rser.2016.02.014

    Article  Google Scholar 

  8. T.V. Ramachandra, B.V. Shruthi, Spatial mapping of renewable energy potential. Renew. Sust. Energ. Rev. 11, 1460–1480 (2007). https://doi.org/10.1016/j.rser.2005.12.002

    Article  Google Scholar 

  9. J. Ondreka, M.I. Rüsgen, I. Stober, K. Czurda, GIS-supported mapping of shallow geothermal potential of representative areas in South-Western Germany—Possibilities and limitations. Renew. Energy 32(13), 2186–2200 (2007). https://doi.org/10.1016/j.renene.2006.11.009

    Article  Google Scholar 

  10. A. García-Gil et al., “GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account,” Renew. Energy, vol. 77, pp. 268–278, May 2015, doi: https://doi.org/10.1016/j.renene.2014.11.096

  11. R. Chesnaux et al., Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: Application to the Saguenay–lac-St.-Jean region, Canada. Comput. Geosci. 37(11), 1870–1882 (2011). https://doi.org/10.1016/j.cageo.2011.04.013

    Article  Google Scholar 

  12. T. Arola, L. Eskola, J. Hellen, K. Korkka-Niemi, Mapping the low enthalpy geothermal potential of shallow quaternary aquifers in Finland. Geotherm. Energy 2(1), 9 (2014). https://doi.org/10.1186/s40517-014-0009-x

    Article  Google Scholar 

  13. D. Bertermann, H. Klug, L. Morper-Busch, A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renew. Energy 75, 335–347 (2015). https://doi.org/10.1016/j.renene.2014.09.033

    Article  Google Scholar 

  14. K. Schiel, O. Baume, G. Caruso, U. Leopold, GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas. Renew. Energy 86, 1023–1036 (2016). https://doi.org/10.1016/j.renene.2015.09.017

    Article  Google Scholar 

  15. VDI-4640, Thermal use of the underground ground source heat pumps systems, no. September. Germany, 2001, p. 41

    Google Scholar 

  16. N. Diao, Q. Li, Z. Fang, Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 43(12), 1203–1211 (2004). https://doi.org/10.1016/j.ijthermalsci.2004.04.009

    Article  Google Scholar 

  17. A.D. Chiasson, S.J. Rees, J.D. Spitler, Preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems. ASHRAE Trans. 106(1), 380–393 (2000)

    Google Scholar 

  18. M. Alcaraz, A. García-Gil, E. Vázquez-Suñé, V. Velasco, Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts. Sci. Total Environ. 543, 536–546 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.022

    Article  Google Scholar 

  19. A. Capozza, M. De Carli, A. Zarrella, Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation. Appl. Energy 107, 350–363 (2013). https://doi.org/10.1016/j.apenergy.2013.02.043

    Article  Google Scholar 

  20. M. Alcaraz, L. Vives, E. Vázquez-Suñé, Estimación inicial del potencial geotérmico somero para la cuenca del Río Matanza-Riachuelo, in IX Congreso Argentino de Hidrogeología. “El agua subterránea en regiones áridas y semiáridas, prolonga la vida de los pueblos”” Ebook. Hidrogeología, Mineria, Cultura y Edcucacion. ISBN: 978-987-661-223-4, vol. 4, (2016), pp. 92–99

    Google Scholar 

  21. M. Alcaraz et al., “Ibero-American Atlas of Shallow Geothermal Energy by RIGS-CYTED,” 2019

    Google Scholar 

  22. L. Vives, C. Scioli, C. Mancino, and S. Martínez, “Modelación del flujo subterráneo e n la cuenca Matanza - Riachuelo, Provincia de Buenos Aires. 3. Modelo numérico de flujo,” in Temas actuales de la hidrología subterránea 2013, 2013, pp. 101–108, [Online]. Available: http://sedici.unlp.edu.ar/handle/10915/30338

  23. C. Mancino, L. Vives, A. Funes, M. Zárate, and S. Martínez, “Modelación del flujo subterráneo en la cuenca Matanza-Riachuelo, provincia de Buenos Aires. 1. Geología y geometría del subsuelo,” 2013

    Google Scholar 

  24. K.K.L. Chan, C.D. Tomlin, Map algebra as a spatial language. Cogn. Linguist. Asp. Geogr. Sp., 351–360 (1991). https://doi.org/10.1007/978-94-011-2606-9_19

  25. N. Molina-Giraldo, P. Bayer, and P. Blum, “Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1223–1231, Jul. 2011, doi: https://doi.org/10.1016/j.ijthermalsci.2011.02.004

  26. V. Velasco et al., “The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment,” Environ. Earth Sci., vol. 68, no. 8, pp. 2145–2162, Aug. 2012, doi: https://doi.org/10.1007/s12665-012-1898-2

  27. L. Eppelbaum, I. Kutasov, and A. Pilchin, Thermal Properties of Formations. 2014

    Google Scholar 

  28. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2, vol. XXXIII, no. 2. Oxford University Press 1959,

    Google Scholar 

  29. AENOR, UNE 100714–1:2014. Diseño, ejecución y seguimiento de una instalación geotérmica somera [Design, implementation and monitoring of a shallow geothermal installation] (2014)

    Google Scholar 

  30. S. Gil, Eficiencia Energética en el sector residencial. Resumen Ejecutivo. Fundación Bariloche (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by PICT 2017 – 0385 of the Argentinian National Agency of Research and by the Ibero-American Programme on Science and Technology for Development (CYTED – Programa de Ciencia y Tecnología para el Desarrollo) under project 719RT0585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Alcaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcaraz, M., Vives, L. (2023). Shallow Geothermal Energy Resources and Thermal Impacts in Buenos Aires City, Argentina. In: Espinoza-Andaluz, M., Melo Vargas, E., Santana Villamar, J., Encalada-Dávila, Á. (eds) Congress on Research, Development, and Innovation in Renewable Energies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-26813-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26813-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26812-0

  • Online ISBN: 978-3-031-26813-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics