Skip to main content

Improved Breeding of High-Carotene Carrots Through Marker-Assisted Paternity Selection and Raman Spectroscopy

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 2

Abstract

Polycross is a functional and low-cost breeding method but the missing paternal pedigree data is a disadvantage for the use of polycross breeding in Apiaceae including carrot (Daucus carota L.). The present study describes a paternity test for carrot breeding using 14 previously described SSR markers. Phenotyping of harvested roots was done using a non-destructive and fast screening method to determine total carotenoid concentration by Raman spectroscopy. Genetic relationship between the parent cultivars was estimated using Nei’s genetic distance and cluster analysis by POPGENE software. Cluster analysis divided the parent cultivars into two major groups according to geographic origin. The mean pairwise genetic distance between the cultivars was 0.096, an indication of very great genetic difference. The software program CERVUS was used for parentage analysis. A total of 82 progenies from a polycross of nine cultivars were genotyped with simple sequence repeat (SSR) markers and paternity was assigned successfully for 81.7% of the offspring at a 99% confidence level, with 58.2% being the result of self-fertilization. These results show that application of a marker-assisted paternity test in carrot polycross breeding allows the rapid assessment of genetic diversity and targeted selection of desired individuals for the next generation of breeding. This was shown by an increase in average carotenoid concentration of 200 ppm (range of 104–441 ppm) in the parent genotypes to an average of 245 ppm in the progeny ranging from 97 to as high as 553 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, T., Cawood, M., Iqbal, Q., Ariño, A., Batool, A., Tariq, R. M. S., Azam, M., & Akhtar, S. (2019). Phytochemicals in Daucus carota and their health benefits. Food, 8, 424.

    Article  CAS  Google Scholar 

  • Baranska, M., Roman, M., Dobrowolski, J., Schulz, H., & Baranski, R. (2013). Recent advances in Raman analysis of plants: Alkaloids, carotenoids, and Polyacetylenes. Current Analytical Chemistry, 9, 108–127.

    Article  CAS  Google Scholar 

  • Baranski, R., Maksylewicz-Kaul, A., Nothnagel, T., Cavagnaro, P. F., Simon, P. W., & Grzebelus, D. (2012). Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genetic Resource Crop Evolution, 59, 163–170.

    Article  Google Scholar 

  • Bohanec, B., Jakše, J., Pilih, K. R., Štajner, N., & Murovec, J. (2020). Innovative F1 hybrid method enables testing of large number of line to line crossings for combining ability. Acta Horticulture, 1282, 179–186.

    Article  Google Scholar 

  • Cavagnaro, P. F., Chung, S. M., Manin, S., Yildiz, M., Ali, A., Alessandro, M. S., Iorizzo, M., Senalik, D. A., & Simon, P. W. (2011). Microsatellite isolation and marker development in carrot – Genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics, 12, 386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clotault, J., Geoffriau, E., Linneton, E., Briard, M., & Peltier, D. (2010). Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibrium in the carrot. Theoretical Applied Genetics, 121, 659–672.

    Article  CAS  PubMed  Google Scholar 

  • Coultate, T., & Blackburn, R. S. (2018). Food colourants: Their past, present and future. Colouration Technology, 134, 165–186.

    Article  CAS  Google Scholar 

  • de Oliveira, V. E., Castro, H. V., Edwards, H. G. M., & de Oliveira, L. F. C. (2010). Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. Journal of Raman Spectroscopy, 41, 642–650.

    Article  Google Scholar 

  • Ellison, S., Iorizzo, M., Senalik, D., & Simon, P. W. (2017). The next generation of carotenoid studies in carrot (Daucus carota L.). Proceedings of the international symposium on carrot and other apiaceae, Ed.: M. Briard. Acta Horticulture, 1153, 93–99.

    Article  Google Scholar 

  • Francis, C. Y., & Yang, R. C. (2019). Popgene version 1.32. Available online: https://sites.ualberta.ca/~fyeh/popgene.html. Accessed on 26 June 2019.

  • Giuliano, G. (2017). Provitamin a biofortification of crop plants: A gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics. Sinauer Associates. 519 pp.

    Google Scholar 

  • Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099–1106.

    Article  PubMed  Google Scholar 

  • Lawaetz, A. J., Christensen, S. M. U., Clausen, S. K., Jørnsgaard, B., Rasmussen, S. K., Andersen, S. B., & Rinnan, Å. (2016). Fast, cross cultivar determination of total carotenoids in intact carrot tissue by Raman spectroscopy and Partial Least Squares calibration. Food Chemistry, 204, 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Meng, D., Clausen, S. K., & Rasmussen, S. K. (2020). Transcriptome analysis reveals candidate genes related to anthocyanin biosynthesis in different carrot genotypes and tissues. Plants, 9, 344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen, A. (2006). Carotenoids and other pigments as natural colourants. Pure Applied Chemistry, 78, 1477–1491.

    Article  CAS  Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann, M. (2001). Entwicklung von Mikrosatelliten Markern bei der Möhre (Daucus carota L.) und die Markierung eines Alternaria-Resistenzgens. Dissertation, University Hannover, Shaker Verlag, Aachen. 116 pp.

    Google Scholar 

  • Oetting, W. S., Lee, H. K., Flanders, D. J., Wiesner, G. L., Sellers, T. A., & King, R. A. (1995). Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics, 30, 450–458.

    Article  CAS  PubMed  Google Scholar 

  • Que, F., Hou, X. L., Wang, G. L., Xu, Z. S., Tan, G. F., Li, T., Wang, Y. H., Khadr, A., & Xiong, A. S. (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 6, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quilitzsch, R., Baranska, M., Schulz, H., & Hoberg, E. (2005). Fast determination of carrot quality by spectroscopy methods in the UV-VIS, NIR and IR range. Journal Applied Botany and Food Quality, 79, 163.

    CAS  Google Scholar 

  • Rong, J., Janson, S., Umehara, M., Ono, M., & Vrieling, K. (2010). Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. Carota) populations. Annals Botany, 106, 285–296.

    Article  CAS  Google Scholar 

  • Schulz, H., Baranska, M., & Baranski, R. (2005). Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers, 77, 212–221.

    Article  CAS  PubMed  Google Scholar 

  • Schuphan, W. (1942). Biochemische Sortenprüfung an Gartenmöhren als neuzeitliche Grundlage für planvolle Züchtungsarbeiten. Züchter, 14, 25–43.

    Article  Google Scholar 

  • Sreelakshmi, Y., Gupta, S., Bodanapu, R., Chauhan, V. S., Hanjabam, M., Thomas, S., Mohan, V., Sharma, S., Srinivasan, R., & Sharma, R. (2010). NEATTILL: A simplified procedure for nucleic acid extraction from arrayed tissue for TILLING and other high-throughput reverse genetic applications. Plant Methods, 6, 1–11.

    Article  Google Scholar 

  • Stein, M., & Nothnagel, T. (1995). Some remarks on carrot breeding (Daucus carota sativus Hoffm.). Plant Breeding, 114, 1–11.

    Article  Google Scholar 

  • Varghese, C., Varghese, E., Jaggi, S., & Bhowmik, A. (2015). Experimental designs for open pollination in polycross trials. Journal of Applied Statistics, 42, 2478–2484.

    Article  Google Scholar 

  • Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genetic microsatellite markers: Features and applications. Trends Biotechnology, 23, 48–55.

    Article  CAS  Google Scholar 

  • von Maydell, D., Brandes, J., Lehnert, H., et al. (2021). Breeding synthetic varieties in annual caraway: Observations on the outcrossing rate in a polycross using a high-throughput genotyping system. Euphytica, 217, 1–15.

    Article  Google Scholar 

  • Withnall, R., Chowdhry, B. Z., Silver, J., Edwards, H. G. M., & de Oliveira, L. F. C. (2003). Raman spectra of carotenoids in natural products. Spectrochimal Acta, Part A, 59, 2207–2212.

    Article  Google Scholar 

Download references

Author Contributions

S.K.C, B.J and S.K.R; methodology, S.K.C; formal analysis, S.K.C and S.D.; investigation, S.K.C. and S.D.; data curation, S.K.C, S.D. and S.K.R.; writing–original draft preparation, S.K.C.; writing–review and editing, S.K.C, S.D., B.J. and S.K.R; project administration, S.K.C., B.J. and S.K.R.; funding acquisition, B.J. and S.K.R.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Funding

 This research was funded by the Danish Agricultural Agency, Green Development and Demonstration Programme, grant number 34009-13-0659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren K. Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clausen, S.K., Dahlke, S., Jørnsgård, B., Rasmussen, S.K. (2023). Improved Breeding of High-Carotene Carrots Through Marker-Assisted Paternity Selection and Raman Spectroscopy. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26669-0_4

Download citation

Publish with us

Policies and ethics