Skip to main content

An Introduction to Engineering and Modeling the Lung

  • Chapter
  • First Online:
Engineering Translational Models of Lung Homeostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1413))

  • 568 Accesses

Abstract

Over the last decade, the field of lung biology has evolved considerably due to many advancements, including the advent of single-cell RNA (scRNA) sequencing, induced pluripotent stem cell (iPSC) reprogramming, and 3D cell and tissue culture. Despite rigorous research and tireless efforts, chronic pulmonary diseases remain the third leading cause of death globally, with transplantation being the only option for treating end-stage disease. This chapter will introduce the broader impacts of understanding lung biology in health and disease, provide an overview of lung physiology and pathophysiology, and summarize the key takeaways from each chapter describing engineering translational models of lung homeostasis and disease. This book is divided into broad topic areas containing chapters covering basic biology, engineering approaches, and clinical perspectives related to (1) the developing lung, (2) the large airways, (3) the mesenchyme and parenchyma, (4) the pulmonary vasculature, and (5) the interface between lungs and medical devices. Each section highlights the underlying premise that engineering strategies, when applied in collaboration with cell biologists and pulmonary physicians, will address critical challenges in pulmonary health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, 2017.

    Google Scholar 

  2. National Center for Health Statistics. Underlying Cause of Death 1999–2019 on CDC WONDER Online Database, released in 2020.

    Google Scholar 

  3. Deterding, R. R., DeBoer, E. M., Cidon, M. J., Robinson, T. E., Warburton, D., Deutsch, G. H., & Young, L. R. (2019). Approaching Clinical Trials in Childhood Interstitial Lung Disease and Pediatric Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 200(10), 1219–1227. https://doi.org/10.1164/rccm.201903-0544CI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. George, P. M., Wells, A. U., & Jenkins, R. G. (2020). Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. The Lancet. Respiratory Medicine, 8(8), 807–815. https://doi.org/10.1016/S2213-2600(20)30225-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michalski, J. E., Kurche, J. S., & Schwartz, D. A. (2022). From ARDS to pulmonary fibrosis: The next phase of the COVID-19 pandemic? Translational Research, 241, 13–24. https://doi.org/10.1016/j.trsl.2021.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Gibson, P. G., Qin, L., & Puah, S. H. (2020). COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. The Medical Journal of Australia, https://doi.org/10.5694/mja2.50674. https://doi.org/10.5694/mja2.50674

  7. Ley, B., Collard, H. R., & King, T. E. (2011). Clinical Course and Prediction of Survival in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 183(4), 431–440. https://doi.org/10.1164/rccm.201006-0894CI

    Article  PubMed  Google Scholar 

  8. King, T. E., Bradford, W. Z., Castro-Bernardini, S., Fagan, E. A., Glaspole, I., Glassberg, M. K., Gorina, E., Hopkins, P. M., Kardatzke, D., Lancaster, L., Lederer, D. J., Nathan, S. D., Pereira, C. A., Sahn, S. A., Sussman, R., Swigris, J. J., Noble, P. W., & ASCEND Study Group. (2014). A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England Journal of Medicine, 370(22), 2083–2092. https://doi.org/10.1056/NEJMoa1402582

    Article  CAS  PubMed  Google Scholar 

  9. Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., Cottin, V., Flaherty, K. R., Hansell, D. M., Inoue, Y., Kim, D. S., Kolb, M., Nicholson, A. G., Noble, P. W., Selman, M., Taniguchi, H., Brun, M., Le Maulf, F., Girard, M., … Collard, H. R. (2014). Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370(22), 2071–2082. https://doi.org/10.1056/NEJMoa1402584

    Article  CAS  PubMed  Google Scholar 

  10. Saidi, R. F., & Hejazii Kenari, S. K. (2014). Challenges of organ shortage for transplantation: Solutions and opportunities. International Journal of Organ Transplantation Medicine, 5(3), 87–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Health Resources & Services Administration. (2022). Organ Donation Statistics | organdonor.gov. https://www.organdonor.gov/learn/organ-donation-statistics

  12. Miller, A. J., & Spence, J. R. (2017). In Vitro Models to Study Human Lung Development, Disease and Homeostasis. Physiology, 32(3), 246–260. https://doi.org/10.1152/physiol.00041.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hogan, B. L. M. (2018). Integrating Mechanical Force into Lung Development. Developmental Cell, 44(3), 273–275. https://doi.org/10.1016/j.devcel.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  14. Li, J., Wang, Z., Chu, Q., Jiang, K., Li, J., & Tang, N. (2018). The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells. Developmental Cell, 44(3), 297-312.e5. https://doi.org/10.1016/j.devcel.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  15. Warburton, D., El-Hashash, A., Carraro, G., Tiozzo, C., Sala, F., Rogers, O., De Langhe, S., Kemp, P. J., Riccardi, D., Torday, J., Bellusci, S., Shi, W., Lubkin, S. R., & Jesudason, E. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158. https://doi.org/10.1016/S0070-2153(10)90003-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sicard, D., Haak, A. J., Choi, K. M., Craig, A. R., Fredenburgh, L. E., & Tschumperlin, D. J. (2018). Aging and anatomical variations in lung tissue stiffness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 314(6), L946–L955. https://doi.org/10.1152/ajplung.00415.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safshekan, F., Tafazzoli-Shadpour, M., Abdouss, M., Behgam Shadmehr, M., & Ghorbani, F. (2017). Investigation of the Mechanical Properties of the Human Tracheal Cartilage. Tanaffos, 16(2), 107–114.

    PubMed  PubMed Central  Google Scholar 

  18. Kia’i, N., & Bajaj, T. (2022). Histology, Respiratory Epithelium. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK541061/

  19. Gartner, L. (2021). Respiratory System. Textbook of Histology, 15, 355-378.e2

    Google Scholar 

  20. Busch, S. M., Lorenzana, Z., & Ryan, A. L. (2021). Implications for Extracellular Matrix Interactions with Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Frontiers in Pharmacology, 12, 645858. https://doi.org/10.3389/fphar.2021.645858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuen, E., Gudis, D. A., Rowan, N. R., Nguyen, S. A., & Schlosser, R. J. (2021). Viral Infections of the Upper Airway in the Setting of COVID-19: A Primer for Rhinologists. American Journal of Rhinology & Allergy, 35(1), 122–131. https://doi.org/10.1177/1945892420947929

    Article  Google Scholar 

  22. Calvert, B. A., Quiroz, E. J., Lorenzana, Z., Doan, N., Kim, S., Senger, C. N., Wallace, W. D., Salomon, M. P., Henley, J., & Ryan, A. L. (2022). Neutrophilic inflammation promotes SARS-CoV-2 infectivity and augments the inflammatory responses in airway epithelial cells. BioRxiv: The Preprint Server for Biology, 2021.08.09.455472. https://doi.org/10.1101/2021.08.09.455472

  23. Wang, R., Hume, A. J., Beermann, M. L., Simone-Roach, C., Lindstrom-Vautrin, J., Le Suer, J., Huang, J., Olejnik, J., Villacorta-Martin, C., Bullitt, E., Hinds, A., Ghaedi, M., Rollins, S., Werder, R. B., Abo, K. M., Wilson, A. A., Mühlberger, E., Kotton, D. N., & Hawkins, F. J. (2022). Human airway lineages derived from pluripotent stem cells reveal the epithelial responses to SARS-CoV-2 infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 322(3), L462–L478. https://doi.org/10.1152/ajplung.00397.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Widdicombe, J. G., & Pack, R. J. (1982). The Clara Cell. European Journal of Respiratory Diseases, 63(3), 202–220.

    CAS  PubMed  Google Scholar 

  25. Suki, B., Stamenovic, D., & Hubmayr, R. (2011). Lung Parenchymal Mechanics. Comprehensive Physiology, 1(3), 1317–1351. https://doi.org/10.1002/cphy.c100033

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burgstaller, G., Oehrle, B., Gerckens, M., White, E. S., Schiller, H. B., & Eickelberg, O. (2017). The instructive extracellular matrix of the lung: Basic composition and alterations in chronic lung disease. European Respiratory Journal, 50(1), 1601805. https://doi.org/10.1183/13993003.01805-2016

    Article  CAS  PubMed  Google Scholar 

  27. Richeldi, L., Collard, H. R., & Jones, M. G. (2017). Idiopathic pulmonary fibrosis. The Lancet, 389(10082), 1941–1952. https://doi.org/10.1016/S0140-6736(17)30866-8

    Article  Google Scholar 

  28. Nasri, A., Foisset, F., Ahmed, E., Lahmar, Z., Vachier, I., Jorgensen, C., Assou, S., Bourdin, A., & De Vos, J. (2021). Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells, 10(12), 3467. https://doi.org/10.3390/cells10123467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCulley, D., Wienhold, M., & Sun, X. (2015). The Pulmonary Mesenchyme Directs Lung Development. Current Opinion in Genetics & Development, 32, 98–105. https://doi.org/10.1016/j.gde.2015.01.011

    Article  CAS  Google Scholar 

  30. Ruffenach, G., Hong, J., Vaillancourt, M., Medzikovic, L., & Eghbali, M. (2020). Pulmonary hypertension secondary to pulmonary fibrosis: Clinical data, histopathology, and molecular insights. Respiratory Research, 21(1), 303. https://doi.org/10.1186/s12931-020-01570-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Burgess, J. K., Mauad, T., Tjin, G., Karlsson, J. C. (2016). Westergren-Thorsson, G. The extracellular matrix – the under-recognized element in lung disease? The Journal of Pathology, 240(4), 397–409. https://doi.org/10.1002/path.4808

  32. Caracena, T., Blomberg, R., Hewawasam, R. S., Fry, Z. E., Riches, D. W. H., & Magin, C. M. (2022). Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. https://doi.org/10.1039/D2BM00827K

  33. Studies, I. of M. (US) C. on E. and L. I. R. to the I. of W. in C., Mastroianni, A. C., Faden, R., & Federman, D. (1994). NIH Revitalization Act of 1993 Public Law 103-43. In Women and Health Research: Ethical and Legal Issues of Including Women in Clinical Studies: Volume I. National Academies Press (US). http://www.ncbi.nlm.nih.gov/books/NBK236531/

  34. Shah, K., McCormack, C. E., & Bradbury, N. A. (2014). Do you know the sex of your cells? American Journal of Physiology – Cell Physiology, 306(1), C3–C18. https://doi.org/10.1152/ajpcell.00281.2013

    Article  CAS  PubMed  Google Scholar 

  35. James, B. D., & Allen, J. B. (2021). Sex-Specific Response to Combinations of Shear Stress and Substrate Stiffness by Endothelial Cells In Vitro. Advanced Healthcare Materials, 10(18), 2100735. https://doi.org/10.1002/adhm.202100735

    Article  CAS  Google Scholar 

  36. Alysandratos, K.-D., Russo, S. J., Petcherski, A., Taddeo, E. P., Acín-Pérez, R., Villacorta-Martin, C., Jean, J. C., Mulugeta, S., Rodriguez, L. R., Blum, B. C., Hekman, R. M., Hix, O. T., Minakin, K., Vedaie, M., Kook, S., Tilston-Lunel, A. M., Varelas, X., Wambach, J. A., Cole, F. S., … Kotton, D. N. (2021). Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Reports, 36(9), 109636. https://doi.org/10.1016/j.celrep.2021.109636

    Article  CAS  PubMed  Google Scholar 

  37. Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J., & Anseth, K. S. (2018). Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 10(424), eaam8645. https://doi.org/10.1126/scitranslmed.aam8645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guenthart, B. A., O’Neill, J. D., Kim, J., Queen, D., Chicotka, S., Fung, K., Simpson, M., Donocoff, R., Salna, M., Marboe, C. C., Cunningham, K., Halligan, S. P., Wobma, H. M., Hozain, A. E., Romanov, A., Vunjak-Novakovic, G., & Bacchetta, M. (2019). Regeneration of severely damaged lungs using an interventional cross-circulation platform. Nature Communications, 10, 1985. https://doi.org/10.1038/s41467-019-09908-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 3D Systems Announces Acquisition of Volumetric Biotechnologies. (2021, October 27). 3D Systems. https://www.3dsystems.com/press-releases/3d-systems-announces-acquisition-volumetric-biotechnologies

  40. Listek, V. (2021, November 1). 3D Systems Pursuing Breakthrough Advances in Bioprinting, Acquires Volumetric. 3DPrint.Com | The Voice of 3D Printing/Additive Manufacturing. https://3dprint.com/286334/3d-systems-pursuing-breakthrough-advances-in-bioprinting-buys-jordan-millers-volumetric/

  41. Volumetric to Be Acquired by 3D Systems to Advance Tissue and Organ Manufacturing. (2021, October 27). Business Wire. https://www.businesswire.com/news/home/20211027006115/en/Volumetric-to-Be-Acquired-by-3D-Systems-to-Advance-Tissue-and-Organ-Manufacturing

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea M. Magin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanneberger, A.E., Weiss, D.J., Magin, C.M. (2023). An Introduction to Engineering and Modeling the Lung. In: Magin, C.M. (eds) Engineering Translational Models of Lung Homeostasis and Disease. Advances in Experimental Medicine and Biology, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-031-26625-6_1

Download citation

Publish with us

Policies and ethics