Skip to main content

Low Ferritin and Anemic Conditions in Endurance Athletes

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Iron deficiency (ID) and iron deficiency anemia (IDA) are global health problems. Iron is the number one nutritional deficiency in the world and the top-ranking cause of anemia. ID refers to low iron stores and inadequate availability, whereas anemia refers to low hemoglobin. Endurance athletes are at a high risk for anemia and nutritional deficiencies related to the intensity and duration of training. Progressive decreases in iron stores can result in symptoms of fatigue, weakness, and performance decline with or without true anemia. Although iron deficiency is not related to all anemias, IDA is the most prevalent form seen in the athletic population. The most common causes of iron deficiency, with or without anemia, are often multifactorial including poor dietary iron intake and decreased absorption, as well as various types of blood loss. A good history and physical examination are necessary to rule out more serious medical illnesses as well as screen for low iron. Healthcare providers must be astute clinicians to interpret the laboratory studies for various types of anemia and different stages of iron deficiency, particularly in the context of athletic participation. Intense exercise, endurance training, and illness have significant, yet predictable, effects on test results. General treatment of anemia and nutritional deficiencies in endurance athletes is individualized to both the athlete and the underlying cause(s). IDA and ID treatment is specifically focused on dietary changes and, when indicated, oral or parenteral supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPO:

Erythropoietin

Fe:

Iron

GI:

Gastrointestinal

Hb:

Hemoglobin

Hct:

Hematocrit

ID:

Iron deficiency

IDA:

Iron deficiency anemia

IDNA:

Iron deficiency nonanemia

IL-6:

Interleukin-6

IV:

Intravenous

LEA:

Low energy availability

MCV:

Mean corpuscular volume

RBC:

Red blood cell

RDW:

Red cell distribution width (RDW)

RED-S:

Relative energy deficiency syndrome

TIBC:

Total iron binding capacity

Triad:

Female athlete triad and male athlete triad

References

  1. National Institute of Health Website. Iron deficiency anemia. Published February 24, 2014. Updated November 7, 2014. http://www.nlm.nih.gov/medlineplus/ency/article/000584.htm.

  2. Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, Peeling P. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78. https://doi.org/10.1007/s00421-019-04157-y. Epub 2019 May 4.

    Article  PubMed  Google Scholar 

  3. Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med. 2004;14(3):145–52.

    Article  PubMed  Google Scholar 

  4. Fallon KE. Screening for haematological and iron-related abnormalities in elite athletes-analysis of 576 cases. J Sci Med Sport. 2008;11(3):329–36.

    Article  PubMed  Google Scholar 

  5. Malczewska J, Szczepanska B, Stupnicki R, Sendecki W. The assessment of frequency of iron deficiency in athletes from the transferrin receptor-ferritin index. Int J Sport Nutr Exerc Metab. 2001;11(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  6. Parks RB, Hetzel SJ, Brooks MA. Iron deficiency and anemia among collegiate athletes: a retrospective chart review. Med Sci Sports Exerc. 2017;49(8):1711–5.

    Article  PubMed  Google Scholar 

  7. Koehler K, Braun H, Achtzehn S, Hildebrand U, Predel H-G, Mester J, Schänzer W. Iron status in elite young athletes: gender-dependent influences of diet and exercise. Eur J Appl Physiol. 2011;112:513–23. https://doi.org/10.1007/s00421-011-2002-4.

    Article  PubMed  Google Scholar 

  8. Joy E, Kussman A, Nattiv A. 2016 update on eating disorders in athletes: a comprehensive narrative review with a focus on clinical assessment and management. Br J Sports Med. 2016;50(3):154–62. https://doi.org/10.1136/bjsports-2015-095735.

    Article  PubMed  Google Scholar 

  9. Damian MT, Vulturar R, Login CC, Damian L, Chis A, Bojan A. Anemia in sports: a narrative review. Life (Basel). 2021;11(9):987. https://doi.org/10.3390/life11090987.

    Article  CAS  PubMed  Google Scholar 

  10. Beard J, Tobin B. Iron status and exercise. Am J Clin Nutr. 2000;72:594s–7s.

    Article  CAS  PubMed  Google Scholar 

  11. Castell LM, Nieman DC, Bermon S, Peeling P. Exercise-induced illness and inflammation: can immunonutrition and iron help? Int J Sport Nutr Exerc Metab. 2019;29(2):181–8. https://doi.org/10.1123/ijsnem.2018-0288. Epub 2019 Feb 18.

    Article  CAS  PubMed  Google Scholar 

  12. Venderley AM, Campbell WW. Vegetarian diets. Sports Med. 2006;36(4):293–305.

    Article  PubMed  Google Scholar 

  13. Clenin GE, Cordes M, Huber A, et al. Iron deficiency in sports–definition, influence on performance and therapy. Consensus statement of the Swiss Society of Sports medicine. Swiss Med Wkly. 2015;145:w14196.

    PubMed  Google Scholar 

  14. Rusu IG, Vodnar DC, Pop CR, Sonia AS, Vulturar R, Istrati M, Morosan I, Farcas AC, Kerezsi AD, Muresan CI, et al. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency—a literature-based review. Nutrients. 2020;12:1993. https://doi.org/10.3390/nu12071993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoppe M, Hulthén L, Hallberg L. The importance of bioavailability of dietary iron in relation to the expected effect from iron fortification. Eur J Clin Nutr. 2008;62(6):761–9. https://doi.org/10.1038/sj.ejcn.1602776. Epub 2007 May 30. Erratum in: Eur J Clin Nutr. 2013 Nov; 67 (11):1226.

    Article  CAS  PubMed  Google Scholar 

  16. Garza D, Shrier I, Kohl HW 3rd, Ford P, Brown M, Matheson GO. The clinical value of serum ferritin tests in endurance athletes. Clin J Sport Med. 1997;7(1):46–53. https://doi.org/10.1097/00042752-199701000-00009.

    Article  CAS  PubMed  Google Scholar 

  17. Cichon J, et al. Effect of an acute exercise on early responses of iron and iron regulatory proteins in young female basketball players. BMC Sports Sci Med Rehabil. 2022;14(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Custer EM, Finch CA, Sobel RE, Zettner A. Population norms for serum ferritin. J Lab Clin Med. 1995;126(1):88–94.

    CAS  PubMed  Google Scholar 

  19. Mast AE, Blinder MA, Gronowski AM, Chumley C, Scott MG. Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem. 1998;44(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  20. Rushton DH, Barth JH. What is the evidence for gender differences in ferritin and haemoglobin? Crit Rev Oncol Hematol. 2009;73(1):1–9.

    Article  Google Scholar 

  21. Morison IM, Ferguson EL. Reference limits for haemoglobin and ferritin. Differences in haemoglobin concentrations reflect physiological differences. BMJ. 2001;323:807–8.

    CAS  PubMed  Google Scholar 

  22. Guyatt GH, et al. Laboratory diagnosis of iron-deficiency anemia: an overview. J Gen Intern Med. 1992;7(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  23. Vaucher P, Druais PL, Waldvogel S, Favrat B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ. 2012;184(11):1247–54. https://doi.org/10.1503/cmaj.110950.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Röcker L, Hinz K, Holland K, Gunga HC, Vogelgesang J, Kiesewetter H. Influence of endurance exercise (triathlon) on circulating transferrin receptors and other indicators of iron status in female athletes. Clin Lab. 2002;48(5–6):307–12.

    PubMed  Google Scholar 

  25. Eichner ER. Athletes, anemia, and iron redux. Curr Sports Med Rep. 2021;20(7):335–6. https://doi.org/10.1249/JSR.0000000000000856.

    Article  PubMed  Google Scholar 

  26. Peeling P, Blee T, Goodman C, et al. Effect of iron injections anaerobic-exercise performance of iron-depleted female athletes. Int J Sport Nutr Exerc Metab. 2007;17(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  27. Ems T, St Lucia K, Huecker MR. Biochemistry, iron absorption. Treasure Island: StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/books/NBK448204/. Accessed Nov 2021.

    Google Scholar 

  28. Weight LM, Klein M, Noakes TD, Jacobs P. “Sports anemia”—a real or apparent phenomenon in endurancetrained athletes? Int J Sports Med. 1992;13:344–7. https://doi.org/10.1055/s-2007-1021278.

    Article  CAS  PubMed  Google Scholar 

  29. Schumacher YO, Schmid A, König D, Berg A. Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med. 2002;36(3):195–9. https://doi.org/10.1136/bjsm.36.3.195. PMID: 12055114; PMCID: PMC1724494.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dressendorfer RH, Wade CE, Amsterdam EA. Development of pseudoanemia in marathon runners during a 20-day road race. JAMA. 1981;246(11):1215–8.

    Article  CAS  PubMed  Google Scholar 

  31. Varamenti E, Tod D, Pullinger S. Redox homeostasis and inflammation responses to training in adolescent athletes: a systematic review and meta-analysis. Sports Med Open. 2020;6(1):34. ISSN 2198-9761.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chapman RF, Sinex J, Wilber R, et al. Routine screening for iron deficiency is an important component of athlete care. Med Sci Sports Exerc. 2017;49(11):2364. https://doi.org/10.1249/MSS.0000000000001358.

    Article  PubMed  Google Scholar 

  33. Bouri S, Martin J. Investigation of iron deficiency anaemia. Clin Med (London). 2018;18(3):242–4. https://doi.org/10.7861/clinmedicine.18-3-242.

    Article  Google Scholar 

  34. Mettler S, Zimmermann MB. Iron excess in recreational marathon runners. Eur J Clin Nutr. 2010;64(5):490–4. https://doi.org/10.1038/ejcn.2010.16. Epub 2010 Mar 3.

    Article  CAS  PubMed  Google Scholar 

  35. Larsuphrom P, Latunde-Dada GO. Association of serum hepcidin levels with aerobic and resistance exercise: a systematic review. Nutrients. 2021;13(2):393. https://doi.org/10.3390/nu13020393. PMID: 33513924; PMCID: PMC7911648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinton PS. Iron and the endurance athlete. Appl Physiol Nutr Metab. 2014;39(9):1012–8. https://doi.org/10.1139/apnm-2014-0147. Epub 2014 May 27.

    Article  CAS  PubMed  Google Scholar 

  37. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2S-2):568S–79S; discussion 580S. https://doi.org/10.1093/jn/131.2.568S.

    Article  CAS  PubMed  Google Scholar 

  38. Peeling P, Dawson B, Goodman C, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583–97. https://doi.org/10.1123/ijsnem.19.6.583.

    Article  CAS  PubMed  Google Scholar 

  39. Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  40. Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675–84. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2.

    Article  PubMed  Google Scholar 

  41. Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome—implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46:246–65. https://doi.org/10.1111/apt.14157.

    Article  CAS  PubMed  Google Scholar 

  42. Castanier C, Bougault V, Teulier C, Jaffré C, Schiano-Lomoriello S, Vibarel-Rebot N, Villemain A, Rieth N, Le-Scanff C, Buisson C, et al. The specificities of elite female athletes: a multidisciplinary approach. Lifestyles. 2021;11:622. https://doi.org/10.3390/life11070622.

    Article  CAS  Google Scholar 

  43. Jones GR, Newhouse I. Sport-related hematuria: a review. Clin J Sport Med. 1997;7(2):119–25. https://doi.org/10.1097/00042752-199704000-00008.

    Article  CAS  PubMed  Google Scholar 

  44. Rojas-Valverde D, Olcina G, Sánchez-Ureña B, Pino-Ortega J, Martínez-Guardado I, Timón R. Proteinuria and bilirubinuria as potential risk indicators of acute kidney injury during running in outpatient settings. Medicina. 2020;56:562. https://doi.org/10.3390/medicina56110562.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoffman MD, Stuempfle KJ, Fogard K, Hew-Butler T, Winger J, Weiss RH. Urine dipstick analysis for identification of runners susceptible to acute kidney injury following an ultramarathon. J Sports Sci. 2013;31:20–31. https://doi.org/10.1080/02640414.2012.720705.

    Article  PubMed  Google Scholar 

  46. Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann Transl Med. 2019;7:270. https://doi.org/10.21037/atm.2019.05.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brune M, Magnusson B, Persson H, Hallberg L. Iron losses in sweat. Am J Clin Nutr. 1986;43:438–43. https://doi.org/10.1093/ajcn/43.3.438.

    Article  CAS  PubMed  Google Scholar 

  48. Telford RD, Sly GJ, Hahn AG, Cunningham RB, Bryant C, Smith JA. Footstrike is the major cause of hemolysis during running. J Appl Physiol. 2003;94:38–42. https://doi.org/10.1152/japplphysiol.00631.2001.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshimura H. Anemia during physical training (sports anemia). Nutr Rev. 1970;28:251–3.

    Article  CAS  PubMed  Google Scholar 

  50. Kuwabara AM, Tenforde AS, Finnoff JT, Fredericson M. Iron deficiency in athletes: a narrative review. PM R. 2022;14(5):620–42. https://doi.org/10.1002/pmrj.12779.

    Article  PubMed  Google Scholar 

  51. Kemma E, et al. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2009;106(5):1864–6.

    Google Scholar 

  52. Levine BD, Stray-Gundersen J. Dose-response of altitude training: how much altitude is enough? In: Roach RC, Wagner PD, Hackett PH, editors. Hypoxia and exercise. Advances in experimental medicine and biology, vol. 588. Boston, MA: Springer; 2007. ISBN: 978-0-387-34816-2.

    Google Scholar 

  53. Peeling P, McKay AK, Pyne DB, et al. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol. 2017;117(6):1233–9.

    Article  CAS  PubMed  Google Scholar 

  54. Peeling P, Sim M, Badenhorst CE, et al. Iron status and the acute post-exercise hepcidin response in athletes. PLoS One. 2014;9(3):e93002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, Lebrun C, Lundy B, Melin A, Meyer NL, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52:687–97. https://doi.org/10.1136/bjsports-2018-099193.

    Article  PubMed  Google Scholar 

  56. Carmichael MA, Thomson RL, Moran LJ, Wycherley TP. The impact of menstrual cycle phase on athletes’ performance: a narrative review. Int J Environ Res Public Health. 2021;18:1667. https://doi.org/10.3390/ijerph18041667.

    Article  PubMed  PubMed Central  Google Scholar 

  57. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, Gibbs JC, Olmsted M, Goolsby M, Matheson G, Expert Panel. 2014 Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st international conference held in San Francisco, CA, May 2012 and 2nd international conference held in Indianapolis, IN, may 2013. Br J Sports Med. 2014;24(2):96–119.

    Google Scholar 

  58. Finn EE, Tenforde AS, Fredericson M, et al. Markers of low-iron status are associated with female athlete triad risk factors. Med Sci Sports Exerc. 2021;53(9):1969–74. https://doi.org/10.1249/MSS.0000000000002660.

    Article  CAS  PubMed  Google Scholar 

  59. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American college of sports medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix. https://doi.org/10.1097/00005768-199705000-00037.

    Article  CAS  PubMed  Google Scholar 

  60. Nattiv A, De Souza MJ, Kristen JK, et al. The male athlete triad—a consensus statement from the female and male athlete triad coalition part 1: definition and scientific basis. Clin J Sport Med. 2021;31(4):335–48.

    Google Scholar 

  61. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A. The IOC consensus statement: beyond the female athlete triad–Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7. https://doi.org/10.1136/bjsports-2014-093502. PMID: 24620037.

    Article  PubMed  Google Scholar 

  62. Oxfeldt M, Dalgaard LB, Jørgensen AA. Hormonal contraceptive use, menstrual dysfunctions, and self-reported side effects in elite athletes in Denmark. Int J Sport Physiol Perform. 2020;15:1377–84. https://doi.org/10.1123/ijspp.2019-0636.

    Article  Google Scholar 

  63. Nielsen P, Nachtigall D. Iron supplementation in athletes. Sports Med. 1998;26(4):207–16.

    Article  CAS  PubMed  Google Scholar 

  64. Zoller H, Vogel W. Iron supplementation in athletes–first do no harm. Nutrition. 2004;20(7):615–9.

    Article  CAS  PubMed  Google Scholar 

  65. Alleyne M, Horne MK, Miller JL. Individualised treatment for iron deficiency anaemia in adults. Am J Med. 2008;121:943–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Office of Dietary Supplements/National Institute of Health. Dietary supplement fact sheet: iron. 10, 501, 2006. Accessed 23 Oct 2021. http://www.ods.od.nih.gov.

  67. Panel on micronutrients, Subcommittees on upper reference levels of nutrients and of interpretation and use of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes from the Food and Nutrition Board (FNB) and Institute of medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: National Academy Press; 2001. p. 290–393.

    Google Scholar 

  68. Reinke S, Taylor WR, Duda GN, et al. Absolute and functional iron deficiency in professional athletes during training and recovery. Int J Cardiol. 2012;156:186–91.

    Article  PubMed  Google Scholar 

  69. Rodenberg RE, Gustafson S. Iron as an ergogenic aid: ironclad evidence? Curr Sports Med Rep. 2007;6(4):258–64. https://doi.org/10.1007/s11932-007-0042-7.

    Article  PubMed  Google Scholar 

  70. Pasricha SR, Low M, Thompson J, et al. Iron supplementation benefits physical performance in women of reproductive age: a systematic review and meta-analysis. J Nutr. 2014;144(6):906–14.

    Article  CAS  PubMed  Google Scholar 

  71. Burden RJ, Morton K, Richards T, et al. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br J Sports Med. 2015;49:1389–97.

    Article  PubMed  Google Scholar 

  72. Rubeor A, Goojha C, Manning J, White J. Does iron supplementation improve performance in iron-deficient nonanemic ath-letes? Sports Health. 2018;10(5):400–5. https://doi.org/10.1177/1941738118777488.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Garvican LA, Saunders PU, Cardoso T, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sports Exerc. 2014;46(2):376–85.

    Article  CAS  PubMed  Google Scholar 

  74. Garvican-Lewis LA, Vuong VL, Govus AD, et al. Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med Sci Sports Exerc. 2018;50(8):1669–78.

    Article  CAS  PubMed  Google Scholar 

  75. Tsalis G, Nikolaidis MG, Mougios V. Effects of iron intake through food or supplement on iron status and performance of healthy adolescent swimmers during a training season. Int J Sports Med. 2004;25(4):306–13. https://doi.org/10.1055/s-2003-45250.

    Article  CAS  PubMed  Google Scholar 

  76. McCormick R, Sim M, et al. Refining treatment strategies for iron deficient athletes. Sports Med. 2020;50(12):2111–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly J. Benjamin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benjamin, H.J., Goolsby, M. (2023). Low Ferritin and Anemic Conditions in Endurance Athletes. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics