Skip to main content

Performance-Based Nutrition for Endurance Training

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Nutrition for endurance athletes has been a hotly debated topic among athletes, coaches, trainers, and others in the fitness industry. Healthcare professionals who treat athletes also need to be aware of what foods athletes are eating and supplements athletes are taking and should be up to date on current evidence regarding sports nutrition recommendations. While some research is conflicting and nutrition recommendations have been argued, the field has evolved over the years with more concrete evidence better defining parameters for macronutrients, micronutrients, hydration, and ergogenic aids. Providers should liaise with sports dietitians whenever possible to keep up to date on this ever-changing field. This chapter reviews current nutrition recommendations for endurance athletes to help clinicians and providers educate and counsel athletes for maximal health and performance. The goals of the chapter are to provide general education to the practicing clinician; a referral to a sports dietitian is highly recommended for individualized counseling to support individual athlete performance needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeukendrup AE, Jentjens RLPG, Moseley L. Nutritional considerations in triathlon. Sports Med. 2005;35(2):163–81.

    Article  PubMed  Google Scholar 

  2. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl. 1):S17–27.

    Article  PubMed  Google Scholar 

  3. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–28.

    Article  PubMed  Google Scholar 

  4. Costa RJS, Hoffman MD, Stellingwerff T. Considerations for ultra-endurance activities: part 1-nutrition. Res Sports Med. 2019;27(2):166–81.

    Article  PubMed  Google Scholar 

  5. Nikolaidis P, Veniamakis E, Rosemann T, Knechtle B. Nutrition in ultra-endurance: state of the art. Nutrients. 2018;10(12):1995.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;4(1):1–7.

    Google Scholar 

  7. Burke L, Deakin V, Minehan M. Clinical sports nutrition. 6th ed. Australia: McGraw-Hill Education; 2021.

    Google Scholar 

  8. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(SUPPL.1):S87–96.

    Article  PubMed  Google Scholar 

  9. Vitale K, Getzin A. Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients. 2019;11(6):1289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Getzin AR, Milner C, Harkins M. Fueling the triathlete: evidence-based practical advice for athletes of all levels. Curr Sports Med Rep. 2017;16(4):240–6.

    Article  PubMed  Google Scholar 

  11. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  12. Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH, et al. Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol. 2006;100:1134–41.

    Article  CAS  PubMed  Google Scholar 

  13. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(SUPPL.1):S25–33.

    Article  PubMed  Google Scholar 

  14. Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med. 2019;49(S2):169–84.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mata F, Valenzuela PL, Gimenez J, Tur C, Ferreria D, Domínguez R, et al. Carbohydrate availability and physical performance: physiological overview and practical recommendations. Nutrients. 2019;11(5):1084.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):1055–67.

    Article  CAS  PubMed  Google Scholar 

  17. Hargreaves M, Richter EA. Regulation of skeletal muscle glycogenolysis during exercise. Can J Sport Sci. 1988;13(4):197–203.

    CAS  PubMed  Google Scholar 

  18. Prats C, Helge JW, Nordby P, Qvortrup K, Ploug T, Dela F, et al. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization. J Biol Chem. 2009;284(23):15692–700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14(1):33.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311(3):E543–53.

    Article  PubMed  Google Scholar 

  22. Phillips SM, van Loon LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(sup1):S29–38.

    Article  PubMed  Google Scholar 

  23. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(S2):S158–67.

    Article  CAS  PubMed  Google Scholar 

  24. Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000;10(3):123–45.

    Article  CAS  PubMed  Google Scholar 

  25. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central Fatigue. Sports Med. 2006;36(10):881–909.

    Article  PubMed  Google Scholar 

  26. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134(6):1583S–7S.

    Article  CAS  PubMed  Google Scholar 

  27. Kim D-H, Kim S-H, Jeong W-S, Lee H-Y. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances. J Exerc Nutr Biochem. 2013;17(4):169–80.

    Article  Google Scholar 

  28. Burd NA, West DWD, Moore DR, Atherton PJ, Staples AW, Prior T, et al. Enhanced amino acid sensitivity of Myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–73.

    Article  CAS  PubMed  Google Scholar 

  29. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2017;14(1):20.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wilmore JH, Costill DL, Kenney WL. Fuel for exercising muscle: metabolism and hormonal control in physiology of sport and exercise. 4th ed. Champaign Illinois: Human Kinetics; 2008. p. 48–59.

    Google Scholar 

  31. Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci. 2015;15(1):13–20.

    Article  PubMed  Google Scholar 

  32. Getzin AR, Milner C, LaFace KM. Nutrition update for the ultraendurance athlete. Curr Sports Med Rep. 2011;10(6):330–9.

    Article  PubMed  Google Scholar 

  33. Murphy NE, Carrigan CT, Margolis LM. High-fat ketogenic diets and physical performance: a systematic review. Adv Nutr. 2021;12(1):223–33.

    Article  PubMed  Google Scholar 

  34. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C: National Academies Press; 2005.

    Google Scholar 

  35. Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16(1):53.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise &; sports nutrition review update: research &; recommendations. J Int Soc Sports Nutr. 2018;15(1):38.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Terasawa N, Okamoto K, Nakada K, Masuda K. Effect of conjugated linoleic acid intake on endurance exercise performance and anti-fatigue in student athletes. J Oleo Sci. 2017;66(7):723–33.

    Article  CAS  PubMed  Google Scholar 

  38. Tajmanesh M, Aryaeian N, Hosseini M, Mazaheri R, Kordi R. Conjugated linoleic acid supplementation has no impact on aerobic capacity of healthy young men. Lipids. 2015;50(8):805–9.

    Article  CAS  PubMed  Google Scholar 

  39. Macaluso F, Barone R, Catanese P, Carini F, Rizzuto L, Farina F, et al. Do fat supplements increase physical performance? Nutrients. 2013;5(2):509–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Convertino VA, Armstrong LE, Coyle EF, Mack GW, Sawka MN, Senay LC, et al. ACSM position stand: exercise and fluid replacement. Med Sci Sports Exerc. 1996;28(10):i–ix.

    Article  CAS  PubMed  Google Scholar 

  41. Noakes TD, Sharwood K, Speedy D, Hew T, Reid S, Dugas J, et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc Natl Acad Sci. 2005;102(51):18550–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    Google Scholar 

  43. Wyndham CH, Strydom NB. The danger of an inadequate water intake during marathon running. S Afr Med J. 1969;43(29):893–6.

    CAS  PubMed  Google Scholar 

  44. Almond CSD, Shin AY, Fortescue EB, Mannix RC, Wypij D, Binstadt BA, et al. Hyponatremia among runners in the Boston Marathon. N Engl J Med. 2005;352(15):1550–6.

    Article  CAS  PubMed  Google Scholar 

  45. Chorley J, Cianca J, Divine J. Risk factors for exercise-associated hyponatremia in non-elite Marathon runners. Clin J Sport Med. 2007;17(6):471–7.

    Article  PubMed  Google Scholar 

  46. Hew-Butler T, Ayus JC, Kipps C, Maughan RJ, Mettler S, Meeuwisse WH, et al. Statement of the second international exercise-associated hyponatremia consensus development conference, New Zealand, 2007. Clin J Sport Med. 2008;18(2):111–21.

    Article  PubMed  Google Scholar 

  47. Krabak BJ, Parker KM, DiGirolamo A. Exercise-associated collapse: is hyponatremia in our head? PM&R. 2016;8(3S):S61–8.

    Article  Google Scholar 

  48. Noakes T. Fluid replacement during Marathon running. Clin J Sport Med. 2003;13(5):309–18.

    Article  PubMed  Google Scholar 

  49. Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RK. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc. 1985;17(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  50. Montain SJ. Exercise associated hyponatraemia: quantitative analysis to understand the aetiology * commentary 1 * commentary 2 * commentary 3 * commentary 4. Br J Sports Med. 2006;40(2):98–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Baker LB. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 2017;47(S1):111–28.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Mccubbin AJ, Costa RJS. Impact of sodium ingestion during exercise on endurance performance: a systematic review. Int J Sports Sci. 2018;8(3):97–107. Available from: http://journal.sapub.org/sports

    Google Scholar 

  53. Guo M. Sports drinks. In: Functional foods. Elsevier; 2009. p. 279–98.

    Chapter  Google Scholar 

  54. Shirreffs SM, Sawka MN. Fluid and electrolyte needs for training, competition, and recovery. J Sports Sci. 2011;29(sup1):S39–46.

    Article  PubMed  Google Scholar 

  55. Anastasiou CA, Kavouras SA, Arnaoutis G, Gioxari A, Kollia M, Botoula E, et al. Sodium replacement and plasma sodium drop during exercise in the heat when fluid intake matches fluid loss. J Athl Train. 2009;44(2):117–23.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Meeusen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. Nestle Nutr Inst Workshop Ser. 2013;76:1–12.

    Article  PubMed  Google Scholar 

  57. Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Glaister M, Gissane C. Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform. 2018;13(4):402–11.

    Article  PubMed  Google Scholar 

  59. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.

    CAS  PubMed  Google Scholar 

  60. Fredholm BB, Chen J-F, Cunha RA, Svenningsson P, Vaugeois J-M. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.

    Article  CAS  PubMed  Google Scholar 

  61. Fredholm BB. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 1995;76(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  62. Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol. 1993;74(3):1149–55.

    Article  CAS  PubMed  Google Scholar 

  63. Warren GL, Park ND, Maresca RD, Mckibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance. Med Sci Sports Exerc. 2010;42(7):1375–87.

    Article  CAS  PubMed  Google Scholar 

  64. BLACK CD, WADDELL DE, GONGLACH AR. Caffeine’s ergogenic effects on cycling. Med Sci Sports Exerc. 2015;47(6):1145–58.

    Article  CAS  PubMed  Google Scholar 

  65. Tarnopolsky M, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol. 2000;89(5):1719–24.

    Article  CAS  PubMed  Google Scholar 

  66. Rousseau E, Ladine J, Liu Q-Y, Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988;267(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  67. Allen DG, Lamb GD, Westerblad H. Impaired calcium release during fatigue. J Appl Physiol. 2008;104(1):296–305.

    Article  CAS  PubMed  Google Scholar 

  68. Blanchard J, Sawers SJA. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol. 1983;24(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mumford GK, Benowitz NL, Evans SM, Kaminski BJ, Preston KL, Sannerud CA, et al. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur J Clin Pharmacol. 1996;51(3–4):319–25.

    Article  CAS  PubMed  Google Scholar 

  70. White JR, Padowski JM, Zhong Y, Chen G, Luo S, Lazarus P, et al. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clin Toxicol. 2016;54(4):308–12.

    Article  Google Scholar 

  71. Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867–74.

    Article  CAS  PubMed  Google Scholar 

  72. Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127–53.

    Article  CAS  PubMed  Google Scholar 

  73. Laizure SC, Meibohm B, Nelson K, Chen F, Hu Z, Parker RB. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects. Br J Clin Pharmacol. 2017;83(12):2687–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234(1–2):159–67.

    Article  CAS  PubMed  Google Scholar 

  75. Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48(S1):79–91.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52:439–55.

    Article  PubMed  Google Scholar 

  77. van Thuyne W, Delbeke F. Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list. Int J Sports Med. 2006;27(9):745–50.

    Article  PubMed  Google Scholar 

  78. Delbeke F, Debackere M. Caffeine: use and abuse in sports. Int J Sports Med. 1984;05(04):179–82.

    Article  CAS  Google Scholar 

  79. Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411.

    Article  CAS  PubMed  Google Scholar 

  80. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(S2):175–84.

    Article  PubMed Central  Google Scholar 

  81. Spriet LL. Caffeine and performance. Int J Sport Nutr. 1995;5(s1):S84–99.

    Article  PubMed  Google Scholar 

  82. Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  83. O’Rourke MP, O’Brien BJ, Knez WL, Paton CD. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J Sci Med Sport. 2008;11(2):231–3.

    Article  PubMed  Google Scholar 

  84. Stadheim HK, Nossum EM, Olsen R, Spencer M, Jensen J. Caffeine improves performance in double poling during acute exposure to 2,000-m altitude. J Appl Physiol. 2015;119(12):1501–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315–24.

    Article  PubMed  Google Scholar 

  86. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115–20.

    Article  PubMed  Google Scholar 

  87. Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta–analysis. Sports Med. 2018;48(8):1913–28.

    Article  PubMed  Google Scholar 

  88. Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: a systematic review and meta-analysis. J Sci Med Sport. 2019;22(2):232–8.

    Article  PubMed  Google Scholar 

  89. Ryan EJ, Kim C-H, Fickes EJ, Williamson M, Muller MD, Barkley JE, et al. Caffeine gum and cycling performance. J Strength Cond Res. 2013;27(1):259–64.

    Article  PubMed  Google Scholar 

  90. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–8.

    Article  CAS  PubMed  Google Scholar 

  91. Prins PJ, Goss FL, Nagle EF, Beals K, Robertson RJ, Lovalekar MT, et al. Energy drinks improve five-kilometer running performance in recreational endurance runners. J Strength Cond Res. 2016;30(11):2979–90.

    Article  PubMed  Google Scholar 

  92. Lara B, Ruiz-Vicente D, Areces F, Abián-Vicén J, Salinero JJ, Gonzalez-Millán C, et al. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr. 2015;114(6):908–14.

    Article  CAS  PubMed  Google Scholar 

  93. Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18:1.

    Google Scholar 

  94. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports. 1979;11(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  95. Conger SA, Warren GL, Hardy MA, Millard-Stafford ML. Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab. 2011;21(1):71–84.

    Article  CAS  PubMed  Google Scholar 

  96. van Nieuwenhoven MA, Brouns F, EMR K. The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med. 2005;26(4):281–5.

    Article  PubMed  Google Scholar 

  97. Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab. 2016;41(8):850–5.

    Article  CAS  PubMed  Google Scholar 

  98. Lara B, Ruiz-Moreno C, Salinero JJ, del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1):e0210275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–7.

    Article  PubMed  Google Scholar 

  100. de Gonçalves L, S, de Painelli V, Yamaguchi G, de Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213–20.

    Article  PubMed  Google Scholar 

  101. Sajadi-Ernazarova KR, Anderson J, Dhakal A, Hamilton RJ. Caffeine Withdrawal. 2021.

    Google Scholar 

  102. Rétey JV, Adam M, Khatami R, UFO L, Jung HH, Berger W, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81(5):692–8.

    Article  PubMed  Google Scholar 

  103. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33(12):2791–800.

    Article  CAS  PubMed  Google Scholar 

  104. Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses. Med Sci Sports Exerc. 2013;45(11):2184–92.

    Article  PubMed  Google Scholar 

  105. Ramos-Campo DJ, Pérez A, Ávila-Gandía V, Pérez-Piñero S, Rubio-Arias JÁ. Impact of caffeine intake on 800-m running performance and sleep quality in trained runners. Nutrients. 2019;11(9):2040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Armstrong LE, Casa DJ, Maresh CM, Ganio MS. Caffeine, fluid-electrolyte balance, temperature regulation, and exercise-heat tolerance. Exerc Sport Sci Rev. 2007;35(3):135–40.

    Article  PubMed  Google Scholar 

  107. Domínguez R, Cuenca E, Maté-Muñoz J, García-Fernández P, Serra-Paya N, Estevan M, et al. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1):43.

    Article  PubMed Central  PubMed  Google Scholar 

  108. McMahon NF, Leveritt MD, Pavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 2017;47(4):735–56.

    Article  PubMed  Google Scholar 

  109. Shaltout HA, Eggebeen J, Marsh AP, Brubaker PH, Laurienti PJ, Burdette JH, et al. Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric Oxide. 2017;69:78–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Jonvik KL, Nyakayiru J, van LJC L, Verdijk LB. Can elite athletes benefit from dietary nitrate supplementation? J Appl Physiol. 2015;119(6):759–61.

    Article  CAS  PubMed  Google Scholar 

  111. Porcelli S, Pugliese L, Rejc E, Pavei G, Bonato M, Montorsi M, et al. Effects of a short-term high-nitrate diet on exercise performance. Nutrients. 2016;8(9):534.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Clifford T, Constantinou CM, Keane KM, West DJ, Howatson G, Stevenson EJ. The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur J Nutr. 2017;56(3):1245–54.

    Article  CAS  PubMed  Google Scholar 

  113. McIlvenna LC, Monaghan C, Liddle L, Fernandez BO, Feelisch M, Muggeridge DJ, et al. Beetroot juice versus chard gel: a pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability. Nitric Oxide 2017;64:61–7.

    Google Scholar 

  114. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007;191(1):59–66.

    Article  CAS  Google Scholar 

  115. Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.

    Article  CAS  PubMed  Google Scholar 

  116. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2):568S–80S.

    Article  CAS  PubMed  Google Scholar 

  117. Sim M, Garvican-Lewis LA, Cox GR, Govus A, McKay AKA, Stellingwerff T, et al. Iron considerations for the athlete: a narrative review. Eur J Appl Physiol. 2019;119(7):1463–78.

    Article  PubMed  Google Scholar 

  118. Beard J, Tobin B. Iron status and exercise. Am J Clin Nutr. 2000;72(2):594S–7S.

    Article  CAS  PubMed  Google Scholar 

  119. Pedlar CR, Brugnara C, Bruinvels G, Burden R. Iron balance and iron supplementation for the female athlete: a practical approach. Eur J Sport Sci. 2018;18(2):295–305.

    Article  PubMed  Google Scholar 

  120. Brumitt J, McIntosh L, Rutt R. Comprehensive sports medicine treatment of an athlete who runs cross-country and is iron deficient. N Am J Sports Phys Ther. 2009;4(1):13–20.

    PubMed Central  PubMed  Google Scholar 

  121. Suedekum NA, Dimeff RJ. Iron and the athlete. Curr Sports Med Rep. 2005;4(4):199–202.

    Article  PubMed  Google Scholar 

  122. Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med. 2004;14(3):145–52.

    Article  PubMed  Google Scholar 

  123. Fallon KE. Screening for haematological and iron-related abnormalities in elite athletes—analysis of 576 cases. J Sci Med Sport. 2008;11(3):329–36.

    Article  PubMed  Google Scholar 

  124. PARKS RB, HETZEL SJ, BROOKS MA. Iron deficiency and anemia among collegiate athletes. Med Sci Sports Exerc. 2017;49(8):1711–5.

    Article  PubMed  Google Scholar 

  125. Malczewska J, Szczepańska B, Stupnicki R, Sendecki W. The assessment of frequency of iron deficiency in athletes from the transferrin receptor-ferritin index. Int J Sport Nutr Exerc Metab. 2001;11(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  126. Pasricha SS, Flecknoe-Brown SC, Allen KJ, Gibson PR, McMahon LP, Olynyk JK, et al. Diagnosis and management of iron deficiency Anaemia: a clinical update. Med J Aust. 2010;193(9):525–32.

    Article  PubMed  Google Scholar 

  127. Patterson AJ, Brown WJ, Roberts DCK. Dietary and supplement treatment of iron deficiency results in improvements in general health and fatigue in Australian women of childbearing age. J Am Coll Nutr. 2001;20(4):337–42.

    Article  CAS  PubMed  Google Scholar 

  128. Nielsen P, Nachtigall D. Iron supplementation in athletes. Sports Med. 1998;26(4):207–16.

    Article  CAS  PubMed  Google Scholar 

  129. Woodson RD, Wills RE, Lenfant C. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol. 1978;44(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  130. Garvican LA, Lobigs L, Telford R, Fallon K, Gore CJ. Haemoglobin mass in an Anaemic female endurance runner before and after iron supplementation. Int J Sports Physiol Perform. 2011;6(1):137–40.

    Article  PubMed  Google Scholar 

  131. Clénin G, Cordes M, Huber A, Schumacher Y, Noack P, Scales J, et al. Iron deficiency in sports – definition, influence on performance and therapy. Swiss Med Wkly. 2015;29:w14196.

    Google Scholar 

  132. Bärtsch P, Mairbäurl H, Friedmann B. Pseudo-anemia caused by sports. Ther Umsch. 1998;55(4):251–5.

    PubMed  Google Scholar 

  133. Taylor NAS. Human heat adaptation. In: Comprehensive physiology. Wiley; 2014. p. 325–65.

    Chapter  Google Scholar 

  134. Voss S, Alsayrafi M, Bourdon P, Klodt F, Nonis D, Hopkins W, et al. Variability of serum markers of erythropoiesis during 6 days of racing in highly trained cyclists. Int J Sports Med. 2013;35(02):89–94.

    Article  PubMed  Google Scholar 

  135. Castell LM, Nieman DC, Bermon S, Peeling P. Exercise-induced illness and inflammation: can Immunonutrition and iron help? Int J Sport Nutr Exerc Metab. 2019;29(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  136. Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64–85.

    PubMed  Google Scholar 

  137. Peeling P, Blee T, Goodman C, Dawson B, Claydon G, Beilby J, et al. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int J Sport Nutr Exerc Metab. 2007;17(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  138. Rubeor A, Goojha C, Manning J, White J. Does iron supplementation improve performance in iron-deficient nonanemic athletes? Sports Health. 2018;10(5):400–5.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Burden RJ, Morton K, Richards T, Whyte GP, Pedlar CR. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? a systematic review and meta-analysis. Br J Sports Med. 2015;49(21):1389–97.

    Article  PubMed  Google Scholar 

  140. Myhre KE, Webber BJ, Cropper TL, Tchandja JN, Ahrendt DM, Dillon CA, et al. Prevalence and impact of anemia on basic trainees in the US air force. Sports Med Open. 2016;2(1):23.

    Article  PubMed Central  Google Scholar 

  141. Gardner GW, Edgerton VR, Senewiratne B, Barnard RJ, Ohira Y. Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr. 1977;30(6):910–7.

    Article  CAS  PubMed  Google Scholar 

  142. Harvey LJ, Armah CN, Dainty JR, Foxall RJ, Lewis DJ, Langford NJ, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005;94(4):557–64.

    Article  CAS  PubMed  Google Scholar 

  143. McCormick R, Sim M, Dawson B, Peeling P. Refining treatment strategies for iron deficient athletes. Sports Med. 2020;50(12):2111–23.

    Article  PubMed  Google Scholar 

  144. Craig WJ. Iron status of vegetarians. Am J Clin Nutr. 1994;59(5):1233S–7S.

    Article  CAS  PubMed  Google Scholar 

  145. Björn-Rasmussen E, Hallberg L, Isaksson B, Arvidsson B. Food iron absorption in man applications of the two-pool extrinsic tag method to measure heme and nonheme iron absorption from the whole diet. J Clin Investig. 1974;53(1):247–55.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Ganz T. Hepcidin. Rinsho Ketsueki. 2016;57(10):1913–7.

    PubMed  Google Scholar 

  147. Moustarah F, Mohiuddin SS. Dietary iron. 2021.

    Google Scholar 

  148. Pagani A, Nai A, Silvestri L, Camaschella C. Hepcidin and anemia: a tight relationship. Front Physiol. 2019;9:10.

    Google Scholar 

  149. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, et al. Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab. 2009;19(6):583–97.

    Article  CAS  PubMed  Google Scholar 

  150. Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106(5):1864–6.

    Article  CAS  PubMed  Google Scholar 

  151. Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM. The effects of acute exercise bouts on Hepcidin in women. Int J Sport Nutr Exerc Metab. 2012;22(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  152. McCormick R, Moretti D, McKay AKA, Laarakkers CM, Vanswelm R, Trinder D, et al. The impact of morning versus afternoon exercise on iron absorption in athletes. Med Sci Sports Exerc. 2019;51(10):2147–55.

    Article  CAS  PubMed  Google Scholar 

  153. Kemna EH, Tjalsma H, Podust VN, Swinkels DW. Mass spectrometry–based Hepcidin measurements in serum and urine: analytical aspects and clinical implications. Clin Chem. 2007;53(4):620–8.

    Article  CAS  PubMed  Google Scholar 

  154. Carpenter CE, Mahoney AW. Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr. 1992;31(4):333–67.

    Article  CAS  PubMed  Google Scholar 

  155. Lynch SR, Hurrell RF, Dassenko SA, Cook JD. The effect of dietary proteins on iron bioavailability in man. Adv Exp Med Biol. 1989;249:117–32.

    Article  CAS  PubMed  Google Scholar 

  156. Björn-Rasmussen E, Hallberg L. Effect of animal proteins on the absorption of food iron in man. Ann Nutr Metab. 1979;23(3):192–202.

    Article  Google Scholar 

  157. Taylor PG, Martínez-Torres C, Romano EL, Layrisse M. The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. Am J Clin Nutr. 1986;43(1):68–71.

    Article  CAS  PubMed  Google Scholar 

  158. Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann N Y Acad Sci. 1980;355(1 Micronutrient):32–44.

    Article  CAS  PubMed  Google Scholar 

  159. Conrad ME, Schade SG. Ascorbic acid chelates in iron absorption: a role for hydrochloric acid and bile. Gastroenterology. 1968;55(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  160. Fidler MC, Davidsson L, Zeder C, Walczyk T, Marti I, Hurrell RF. Effect of ascorbic acid and particle size on iron absorption from ferric pyrophosphate in adult women. Int J Vitam Nutr Res. 2004;74(4):294–300.

    Article  CAS  PubMed  Google Scholar 

  161. Garvican LA, Saunders PU, Cardoso T, Macdougall IC, Lobigs LM, Fazakerley R, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sports Exerc. 2014;46(2):376–85.

    Article  CAS  PubMed  Google Scholar 

  162. Klingshirn LA, Pate RR, Bourque SP, Davis JM, Sargent RG. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med Sci Sports Exerc. 1992;24(7):819–24.

    Article  CAS  PubMed  Google Scholar 

  163. Fogelholm M, Jaakkola L, Lampisjärvi T. Effects of iron supplementation in female athletes with low serum ferritin concentration. Int J Sports Med. 1992;13(02):158–62.

    Article  CAS  PubMed  Google Scholar 

  164. Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol. 2000;88(3):1103–11.

    Article  CAS  PubMed  Google Scholar 

  165. LaManca JJ, Haymes EM. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sports Exerc. 1993;25(12):1386–92.

    Article  CAS  PubMed  Google Scholar 

  166. Dawson B, Goodman C, Blee T, Claydon G, Peeling P, Beilby J, et al. Iron supplementation: oral tablets versus intramuscular injection. Int J Sport Nutr Exerc Metab. 2006;16(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  167. Stoffel NU, von Siebenthal HK, Moretti D, Zimmermann MB. Oral iron supplementation in iron-deficient women: how much and how often? Mol Asp Med. 2020;75:100865.

    Article  CAS  Google Scholar 

  168. Moretti D, Goede JS, Zeder C, Jiskra M, Chatzinakou V, Tjalsma H, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981–9.

    Article  CAS  PubMed  Google Scholar 

  169. Werner T, Wagner SJ, Martinez I, Walter J, Chang J-S, Clavel T, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 2011;60(3):325–33.

    Article  CAS  PubMed  Google Scholar 

  170. Tolkien Z, Stecher L, Mander AP, Pereira DIA, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383.

    Article  PubMed Central  PubMed  Google Scholar 

  171. Stoffel NU, Zeder C, Brittenham GM, Moretti D, Zimmermann MB. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica. 2020;105(5):1232–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. McCormick R, Dreyer A, Dawson B, Sim M, Lester L, Goodman C, et al. The effectiveness of daily and alternate day Oral iron supplementation in athletes with suboptimal iron status (part 2). Int J Sport Nutr Exerc Metab. 2020;30(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  173. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  174. Frazer DM. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut. 2003;52(3):340–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Wright AJA, Southon S, Fairweather-Tait SJ. Measurement of non-haem iron absorption in non-anaemic rats using 59 Fe: can the Fe content of duodenal mucosal cells cause lumen or mucosal radioisotope dilution, or both, thus resulting in the underestimation of Fe absorption? Br J Nutr. 1989;62(3):719–27.

    Article  CAS  PubMed  Google Scholar 

  176. Nemeth E, Ganz T. Regulation of iron metabolism by Hepcidin. Annu Rev Nutr. 2006;26(1):323–42.

    Article  CAS  PubMed  Google Scholar 

  177. Zariwala MG. Comparison study of Oral iron preparations using a human intestinal model. Sci Pharm. 2013;81(4):1123–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Berber I, Diri H, Erkurt MA, Aydogdu I, Kaya E, Kuku I. Evaluation of ferric and ferrous iron therapies in women with iron deficiency Anaemia. Adv Hematol. 2014;2014:1–6.

    Article  Google Scholar 

  179. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, Manasanch J, et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013;29(4):291–303.

    Article  CAS  PubMed  Google Scholar 

  180. Ferrari P, Nicolini A, Manca ML, Rossi G, Anselmi L, Conte M, et al. Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomed Pharmacother. 2012;66(6):414–8.

    Article  CAS  PubMed  Google Scholar 

  181. Macdougall IC. Strategies for iron supplementation: oral versus intravenous. Kidney Int. 1999;55:S61–6.

    Article  Google Scholar 

  182. Macdougall IC. Evolution of iv iron compounds over the last century. J Ren Care. 2009;35:8–13.

    Article  PubMed  Google Scholar 

  183. Woods A, Garvican-Lewis LA, Saunders PU, Lovell G, Hughes D, Fazakerley R, et al. Four weeks of IV iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS One. 2014;9(9):e108042.

    Article  PubMed Central  PubMed  Google Scholar 

  184. McKay AKA, Goods PSR, Binnie MJ, Goodman C, Peeling P. Examining the decay in serum ferritin following intravenous iron infusion: a retrospective cohort analysis of Olympic sport female athletes. Appl Physiol Nutr Metab. 2020;45(10):1174–7.

    Article  PubMed  Google Scholar 

  185. Bovell-Benjamin AC, Viteri FE, Allen LH. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am J Clin Nutr. 2000;71(6):1563–9.

    Article  CAS  PubMed  Google Scholar 

  186. Drozd M, Jankowska EA, Banasiak W, Ponikowski P. Iron therapy in patients with heart failure and iron deficiency: review of iron preparations for practitioners. Am J Cardiovasc Drugs. 2017;17(3):183–201.

    Article  CAS  PubMed  Google Scholar 

  187. Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.

    Article  CAS  PubMed  Google Scholar 

  188. Vitale KC, Hueglin S, Broad E. Tart cherry juice in athletes: a literature review and commentary. Curr Sports Med Rep. 2017;16(4):230–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, S., Hueglin, S., Scaramella, J., Vitale, K. (2023). Performance-Based Nutrition for Endurance Training. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics