Skip to main content

Blood Flow Restriction and Other Innovations in Musculoskeletal Rehabilitation

  • Chapter
  • First Online:
Endurance Sports Medicine
  • 797 Accesses

Abstract

Athletes can experience loss of muscle mass and function for multiple reasons following a sports injury, surgery, fracture, or joint degeneration. High load resistance training is often contraindicated early on in rehabilitation. Low-load blood flow restriction (BFR) training has beneficial effects on skeletal muscle strengthening while avoiding the risks of heavy loads. BFR can be used in a wide range of clinical applications including prehabilitation, rehabilitation, potentially reducing return to sport timelines. It may assist athletes looking for those marginal gains when their current training program has plateaued. Managing or preventing musculoskeletal injuries in a sports setting can be challenging with a plethora of modalities and options to facilitate rehabilitation and recovery. Dry Needling and Cupping Therapy may be beneficial in reducing pain. While cryotherapy can be used for pain relief and recovery, it has recently been discouraged in the management of acute soft tissue injuries. New innovations in manual therapy, including foam rolling, percussive massage devices, and instrument-assisted soft tissue mobilization, extrapolate their benefit primarily from sports massage promoting pain relief, increased flexibility, and faster recovery. They are popularized for allowing “self-massage.” Muscle energy and active release techniques aim to reduce pain, increase range of motion (ROM) and facilitate optimal tissue healing. All these innovations may have a role in managing an endurance athlete through rehabilitation, training, competition, recovery, and injury prevention; however most require more high quality research with greater homogeneity across samples, methods, measurements, and treatment protocols in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP:

Arterial blood pressure

ACL:

Anterior cruciate ligament

APTA:

American physical therapy association

ART:

Active release technique

BFR:

Blood flow restriction

CK:

Creatine kinase

CNS:

Central nervous system

CRP:

C-reactive protein

CWI:

Cold water immersion

CWT:

Contrast water therapy

DN:

Dry needling

DOMS :

Delayed onset muscle soreness

DVT:

Deep vein thrombosis

FR:

Foam rolling

GTO:

Golgi tendon organ

HL:

High load

IASTM:

Instrument assisted soft tissue mobilisation

IGF-1:

Insulin-like growth factor

LBP:

Lower back pain

LEF:

Lower extremity function

LL:

Low load

MET:

Muscle energy technique

MTrP:

Myofascial trigger points

MVC:

Maximum voluntary contraction

NCS:

Neurocryostimulation

PFP:

Patellofemoral pain

PNF:

Proprioceptive neuromuscular facilitation

RCT:

Randomised controlled trial

REPS:

Repetitions

RM:

Repetition maximum

ROM:

Range of motion

ROS:

Reactive oxygen species

TKA:

Total Knee arthroplasty

VAS:

Visual analog scale

VFR:

Vibrating foam roller

VJH:

Vertical jump height

WBC:

Whole body cryotherapy

References

  1. Neagu N. Importance of recovery in sports performance, vol. IX. Marathon; 2017.

    Google Scholar 

  2. Lambert BS, Hedt C, Moreno M, Harris JD, McCulloch P. Blood flow restriction therapy for stimulating skeletal muscle growth: practical considerations for maximizing recovery in clinical rehabilitation settings. Tech Orthop. 2018:33.

    Google Scholar 

  3. Patterson SD, Hughes L, Head P, Warmington S, Brandner C. Blood flow restriction training: a novel approach to augment clinical rehabilitation: how to do it. Br J Sports Med. 2017;51

    Google Scholar 

  4. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51

    Google Scholar 

  5. Ferguson RA. Blood flow-restricted exercise: providing more bang for buck in trained athletes? Acta Physiol. 2018;223

    Google Scholar 

  6. Vanwye WR, Weatherholt AM, Mikesky AE. Blood flow restriction training: implementation into clinical practice. Int J Exerc Sci. 10(5):649–54.

    Google Scholar 

  7. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport. 2016:19.

    Google Scholar 

  8. Hamed I. Moderate blood flow restriction training. MOJ. Sports Med. 2017:1.

    Google Scholar 

  9. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45

    Google Scholar 

  10. Pignanelli C, Christiansen D, Burr JF. Blood flow restriction training and the high-performance athlete: science to application. J Appl Physiol. 2021;130

    Google Scholar 

  11. Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol. 2018;223

    Google Scholar 

  12. Cook SB, Scott BR, Hayes KL, Murphy BG. Neuromuscular adaptations to low-load blood flow restricted resistance training. J Sports Sci Med. 2018:17.

    Google Scholar 

  13. Lixandrão ME, Ugrinowitsch C, Berton R, Vechin FC, Conceição MS, Damas F, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48

    Google Scholar 

  14. Barber-Westin S, Noyes FR. Blood flow–restricted training for lower extremity muscle weakness due to knee pathology: a systematic review. Sports Health. 2019;(1):11, 69–83.

    Google Scholar 

  15. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luebbers PE, Fry AC, Kriley LM, Butler MS. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J Strength Cond Res. 2014;28(8):2270–80.

    Article  PubMed  Google Scholar 

  17. Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. 2012;26

    Google Scholar 

  18. Cook CJ, Kilduff LP, Beaven CM. Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform. 2014;9(1):166–72.

    Article  PubMed  Google Scholar 

  19. Tennent DJ, Burns TC, Johnson AE, Owens JG, Hylden CM. Blood flow restriction training for postoperative lower-extremity weakness. Curr Sports Med Rep. 2018;17(4):119–22.

    Article  PubMed  Google Scholar 

  20. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360–7.

    Article  PubMed  Google Scholar 

  21. Jessee MB, Mattocks KT, Buckner SL, Dankel SJ, Mouser JG, Abe T, et al. Mechanisms of blood flow restriction: the new testament. Tech Orthop. 2018;33(2):72–9.

    Article  Google Scholar 

  22. Yow BG, Tennent DJ, Dowd TC, Loenneke JP, Owens JG. Blood flow restriction training after Achilles tendon rupture. J Foot Ankle Surg. 2018;57(3):635–8.

    Article  PubMed  Google Scholar 

  23. Giles L, Webster KE, McClelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med. 2017;51(23):1688–94.

    Article  PubMed  Google Scholar 

  24. Dankel SJ, Jessee MB, Abe T, Loenneke JP. The effects of blood flow restriction on upper-body musculature located distal and proximal to applied pressure. Sports Med. 2016;46(1):23–33.

    Article  PubMed  Google Scholar 

  25. Mattocks KT, Jessee MB, Mouser JG, Dankel SJ, Buckner SL, Bell ZW, et al. The application of blood flow restriction: Lessons From the Laboratory. Curr Sports Med Rep. 2018;17(4):129–34.

    Article  PubMed  Google Scholar 

  26. Hicks AA, Brandon G, Chandler D, Ripley R, Torisk A, Warnecke A, et al. The effects of blood flow restriction training on measures of strength and body composition in college age females. International journal of exercise. Science. 2018;2(10):67.

    Google Scholar 

  27. Stovall JH, Hunter SD, Walker JL. Effects of blood-flow restriction on hemodynamic and cardiorespiratory responses to aerobic exercise testing. Int J Exerc Sci. 2018;(10):2, 93.

    Google Scholar 

  28. Franz A, Queitsch FP, Behringer M, Mayer C, Krauspe R, Zilkens C. Blood flow restriction training as a prehabilitation concept in total knee arthroplasty: a narrative review about current preoperative interventions and the potential impact of BFR. Med Hypotheses. 2018:110.

    Google Scholar 

  29. Bittar ST, Pfeiffer PS, Santos HH, Cirilo-Sousa MS. Effects of blood flow restriction exercises on bone metabolism: a systematic review. Clin Physiol Funct Imaging. 2018;38

    Google Scholar 

  30. Slysz JT, Burr JF. The effects of blood flow restricted electrostimulation on strength and hypertrophy. J Sport Rehabil. 2018;27

    Google Scholar 

  31. Loenneke J, Abe T, Wilson J, Thiebaud R, Fahs C, Rossow L, et al. Blood flow restriction: an evidence based progressive model (review). Acta Physiol Hung. 2012;99

    Google Scholar 

  32. Bunevicius K, Sujeta A, Poderiene K, Zachariene B, Silinskas V, Minkevicius R, et al. Cardiovascular response to bouts of exercise with blood flow restriction. J Phys Ther Sci. 2016;28

    Google Scholar 

  33. Alexandria V. Description of dry needling in clinical practice: an educational resource paper. American Physical Therapy Association; 2013.

    Google Scholar 

  34. Physiotherapy Acupuncture Association of New Zealand. Guidelines for safe acupuncture and dry needling practice. 2014.

    Google Scholar 

  35. Gattie E, Cleland JA, Snodgrass S. The effectiveness of trigger point dry needling for musculoskeletal conditions by physical therapists: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2017;47(3):133–49.

    Article  PubMed  Google Scholar 

  36. Charles D, Hudgins T, MacNaughton J, Newman E, Tan J, Wigger M. A systematic review of manual therapy techniques, dry cupping and dry needling in the reduction of myofascial pain and myofascial trigger points. J Bodyw Mov Ther. 2019;23(3):539–46.

    Article  PubMed  Google Scholar 

  37. Fernández-de-Las-Peñas C, Nijs J. Trigger point dry needling for the treatment of myofascial pain syndrome: current perspectives within a pain neuroscience paradigm. J Pain Res. 2019;12:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Navarro-Santana MJ, Sanchez-Infante J, Fernández-de-las-Peñas C, Cleland JA, Martín-Casas P, Plaza-Manzano G. Effectiveness of dry needling for myofascial trigger points associated with neck pain symptoms: an updated systematic review and meta-analysis. Journal of. Clin Med. 2020;9

    Google Scholar 

  39. Vázquez-Justes D, Yarzábal-Rodríguez R, Doménech-García V, Herrero P, Bellosta-López P. Effectiveness of dry needling for headache: a systematic review. Neurologia (Barcelona, Spain). 2020;S0213-4853(19):30144–6.

    Google Scholar 

  40. Funk MF, Frisina-Deyo AJ. Dry needling for spine related disorders: a scoping review. Chiropr Man Therap. 2020;28(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu L, Huang Q-M, Liu Q-G, Thitham N, Li L-H, Ma Y-T, et al. Evidence for dry needling in the management of myofascial trigger points associated with low back pain: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(1):144–152.e2.

    Article  PubMed  Google Scholar 

  42. Hu H-T, Gao H, Ma R-J, Zhao X-F, Tian H-F, Li L. Is dry needling effective for low back pain? Medicine. 2018;97(26):e11225.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hall ML, Mackie AC, Ribeiro DC. Effects of dry needling trigger point therapy in the shoulder region on patients with upper extremity pain and dysfunction: a systematic review with meta-analysis. Physiotherapy. 2018;104(2):167–77.

    Article  PubMed  Google Scholar 

  44. Navarro-Santana MJ, Sanchez-Infante J, Gómez-Chiguano GF, Cleland JA, López-de-Uralde-Villanueva I, Fernández-de-las-Peñas C, et al. Effects of trigger point dry needling on lateral epicondylalgia of musculoskeletal origin: a systematic review and meta-analysis. Clin Rehabil. 2020;34(11):1327–40.

    Article  PubMed  Google Scholar 

  45. Rahou-El-Bachiri Y, Navarro-Santana MJ, Gómez-Chiguano GF, Cleland JA, López-de-Uralde-Villanueva I, Fernández-de-las-Peñas C, et al. Effects of trigger point dry needling for the management of knee pain syndromes: a systematic review and meta-analysis. Journal of. Clin Med. 2020;9(7):2044.

    Google Scholar 

  46. Stoychev V, Finestone AS, Kalichman L. Dry needling as a treatment modality for tendinopathy: a narrative review. Curr Rev Musculoskelet Med. 2020;13(1):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang Z-R, Ni G-X. Is it time to put traditional cold therapy in rehabilitation of soft-tissue injuries out to pasture? World J Clin Cases. 2021;9(17):4116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dubois B, Esculier J-F. Soft-tissue injuries simply need PEACE and LOVE. Br J Sports Med. 2020;54:72. http://bjsm.bmj.com/content/54/2/72.abstract.

    Article  PubMed  Google Scholar 

  49. Khoshnevis S, Craik NK, Diller KR. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2475–83.

    Article  PubMed  Google Scholar 

  50. Allan R, Mawhinney C. Is the ice bath finally melting? Cold water immersion is no greater than active recovery upon local and systemic inflammatory cellular stress in humans. J Physiol. 2017;595(6):1857–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qu C, Wu Z, Xu M, Qin F, Dong Y, Wang Z, et al. Cryotherapy models and timing-sequence recovery of exercise-induced muscle damage in middle- and long-distance runners. J Athl Train. 2020;55(4):329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Costello JT, Baker PR, Minett GM, Bieuzen F, Stewart IB, Bleakley C. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev. 2015;2015(9):CD010789.

    PubMed  PubMed Central  Google Scholar 

  53. Peake JM, Roberts LA, Figueiredo VC, Egner I, Krog S, Aas SN, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595(3):695–711.

    Article  CAS  PubMed  Google Scholar 

  54. Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lombardi G, Ziemann E, Banfi G. Whole-body cryotherapy in athletes: from therapy to stimulation. An updated review of the literature. Front Physiol. 2017;8:258.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zembron-Lacny A, Morawin B, Wawrzyniak-Gramacka E, Gramacki J, Jarmuzek P, Kotlega D, et al. Multiple cryotherapy attenuates Oxi-inflammatory response following skeletal muscle injury. Int J Environ Res Public Health. 2020;17(21):7855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Broatch JR, Poignard M, Hausswirth C, Bishop DJ, Bieuzen F. Whole-body cryotherapy does not augment adaptations to high-intensity interval training. Sci Rep. 2019;(1):9–12013.

    Google Scholar 

  58. Patel K, Bakshi N, Freehill MT, Awan TM. Whole-body cryotherapy in sports medicine. Curr Sports Med Rep. 2019;18(4):136–40.

    Article  PubMed  Google Scholar 

  59. Gasiba Q, Suwehli W. Determining the benefits of massage mechanisms: a review of literature. Rehabil Sci. 2017;2:58–67.

    Google Scholar 

  60. Davis HL, Alabed S, Chico TJA. Effect of sports massage on performance and recovery: a systematic review and meta-analysis. BMJ Open Sport Exerc Med. 2020;6(1):e000614.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing Post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schilz M, Leach L. Knowledge and perception of athletes on sport massage therapy (SMT). Int J Ther Massage Bodyw. 2020;13(1):13–21.

    Google Scholar 

  63. Phillips J, Diggin D, King DL, Sforzo GA. Effect of varying self-myofascial release duration on subsequent athletic performance. J Strength Cond Res. 2021;35(3):746–53.

    Article  PubMed  Google Scholar 

  64. Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10(6):827–38.

    PubMed  PubMed Central  Google Scholar 

  65. Pearcey GEP, Bradbury-Squires DJ, Kawamoto J-E, Drinkwater EJ, Behm DG, Button DC. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train. 2015;50(1):5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wiewelhove T, Döweling A, Schneider C, Hottenrott L, Meyer T, Kellmann M, et al. A meta-analysis of the effects of foam rolling on performance and recovery. Front Physiol. 2019;10:376.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Behm DG, Alizadeh S, Hadjizadeh Anvar S, Mahmoud MMI, Ramsay E, Hanlon C, et al. Foam rolling prescription: a clinical commentary. J Strength Cond Res. 2020;34(11):3301–8.

    Article  PubMed  Google Scholar 

  68. Adamczyk JG, Gryko K, Boguszewski D. Does the type of foam roller influence the recovery rate, thermal response and DOMS prevention? PLoS One. 2020;(6):15, e0235195.

    Google Scholar 

  69. Cheatham SW, Stull KR. Roller massage: comparison of three different surface type pattern foam rollers on passive knee range of motion and pain perception. J Bodyw Mov Ther. 2019;23(3):555–60.

    Article  PubMed  Google Scholar 

  70. Cheatham SW, Stull KR, Kolber MJ. Comparison of a vibration roller and a nonvibration roller intervention on knee range of motion and pressure pain threshold: a randomized controlled trial. J Sport Rehabil. 2019;28(1):39–45.

    Article  PubMed  Google Scholar 

  71. Romero-Moraleda B, González-García J, Cuéllar-Rayo Á, Balsalobre-Fernández C, Muñoz-García D, Morencos E. Effects of vibration and non-vibration foam rolling on recovery after exercise with induced muscle damage. J Sports Sci Med. 2019;18

    Google Scholar 

  72. Freiwald J, Baumgart C, Kühnemann M, Hoppe MW. Foam-rolling in sport and therapy—potential benefits and risks. Sports. Orthop Traumatol. 2016:32.

    Google Scholar 

  73. Konrad A, Glashuttner C, Reiner M, Bernsteiner D, Tilp M. The acute effects of a percussive massage treatment with a Hypervolt device on plantar flexor muscles’ range of motion and performance. J Sports Sci Med. 2020;19:690–4.

    PubMed  PubMed Central  Google Scholar 

  74. Behm DG, Wilke J. Do self-myofascial release devices release myofascia? rolling mechanisms: a narrative review. Sports Med. 2019;49(8):1173–81.

    Article  PubMed  Google Scholar 

  75. Lee C-L, Chu I-H, Lyu B-J, Chang W-D, Chang N-J. Comparison of vibration rolling, nonvibration rolling, and static stretching as a warm-up exercise on flexibility, joint proprioception, muscle strength, and balance in young adults. J Sports Sci. 2018;36(22):2574–82.

    Article  Google Scholar 

  76. Kujala R, Davis C, Young L. The effect of handheld percussion treatment on vertical jump height. Int J Exerc Sci. 2019;8(7):75.

    Google Scholar 

  77. Kerautret Y, Guillot A, di Rienzo F. Evaluating the effects of embedded self-massage practice on strength performance: a randomized crossover pilot trial. PLoS One. 2021;16(3):e0248031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. García-Sillero M, Jurado-Castro JM, Benítez-Porres J, Vargas-Molina S. Acute effects of a percussive massage treatment on movement velocity during resistance training. Int J Environ Res Public Health. 2021;18(15):7726.

    Article  PubMed  PubMed Central  Google Scholar 

  79. García-Sillero M, Benítez-Porres J, García-Romero J, Bonilla DA, Petro JL, Vargas-Molina S. Comparison of interventional strategies to improve recovery after eccentric exercise-induced muscle fatigue. Int J Environ Res Public Health. 2021;18(2):647.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Patel R, Patel A. Effect of Theragun on the improvement of back flexibility: a case study. J Appl Dent Med Sci. 2020;19:15–6.

    Google Scholar 

  81. Chen J, Zhang F, Chen H, Pan H. Rhabdomyolysis after the use of percussion massage gun: a case report. Phys Ther. 2021:101.

    Google Scholar 

  82. Cheatham SW, Baker R, Kreiswirth E. Instrument assisted soft-tissue mobilization: a commentary on clinical practice guidelines for rehabilitation professionals. Int J Sports Phys Ther. 2019;14(4):670–82.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lambert M, Hitchcock R, Lavallee K, Hayford E, Morazzini R, Wallace A, et al. The effects of instrument-assisted soft tissue mobilization compared to other interventions on pain and function: a systematic review. Phys Ther Rev. 2017;22(1–2):76–85.

    Article  Google Scholar 

  84. Kim J, Sung DJ, Lee J. Therapeutic effectiveness of instrument-assisted soft tissue mobilization for soft tissue injury: mechanisms and practical application. J Exerc Rehabil. 2017;13(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ge W, Roth E, Sansone A. A quasi-experimental study on the effects of instrument assisted soft tissue mobilization on mechanosensitive neurons. J Phys Ther Sci. 2017;29(4):654–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Thomas E, Cavallaro AR, Mani D, Bianco A, Palma A. The efficacy of muscle energy techniques in symptomatic and asymptomatic subjects: a systematic review. Chiropr Man Therap. 2019;27:35.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chaitow L. Chaitow muscle energy techniques. 4th ed. Elsevier: Churchill Livingstone; 2013.

    Google Scholar 

  88. Laudner KG, Wenig M, Selkow NM, Williams J, Post E. Forward shoulder posture in collegiate swimmers: a comparative analysis of muscle-energy techniques. J Athl Train. 2015;50(11):1133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sbardella S, la Russa C, Bernetti A, Mangone M, Guarnera A, Pezzi L, et al. Muscle energy technique in the rehabilitative treatment for acute and chronic non-specific neck pain: a systematic review. Healthcare. 2021;9(6):746.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reed ML, Begalle RL, Laudner KG. Acute effects of muscle energy technique and joint mobilization on shoulder tightness in youth throwing athletes: a randomized controlled trial. Int J Sports Phys Ther. 2018;13(6):1024–31.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yeganeh Lari A, Okhovatian F, sadat NS, Baghban AA. The effect of the combination of dry needling and MET on latent trigger point upper trapezius in females. Man Ther. 2016;21:204–9.

    Article  PubMed  Google Scholar 

  92. Noto-Bell L, Vogel BN, Senn DE. Effects of post–isometric relaxation on ankle plantarflexion and timed flutter kick in pediatric competitive swimmers. J Osteopath Med. 2019;119(9):569–77.

    Article  Google Scholar 

  93. Robb A, Pajaczkowski J. Immediate effect on pain thresholds using active release technique on adductor strains: pilot study. J Bodyw Mov Ther. 2011;15(1):57–62.

    Article  PubMed  Google Scholar 

  94. George JW, Tunstall AC, Tepe RE, Skaggs CD. The effects of active release technique on hamstring flexibility: a pilot study. J Manip Physiol Ther. 2006;29(3):224–7.

    Article  Google Scholar 

  95. Howitt S, Wong J, Zabukovec S. The conservative treatment of trigger thumb using Graston techniques and active release techniques®. J Can Chiropr Assoc. 2006;50:249–54.

    PubMed  PubMed Central  Google Scholar 

  96. McMurray J, Landis S, Lininger K, Baker RT, Nasypany A, Seegmiller J. A comparison and review of indirect myofascial release therapy, instrument-assisted soft tissue mobilization, and active release techniques to inform clinical decision making. Int J Athl Ther Train. 2015;20(5):29–34.

    Article  Google Scholar 

  97. George JW, Tepe R, Busold D, Keuss S, Prather H, Skaggs CD. The effects of active release technique on carpal tunnel patients: a pilot study. J Chiropr Med. 2006;5(4):119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Drover JM, Forand DR, Herzog W. Influence of active release technique on quadriceps inhibition and strength: a pilot study. J Manip Physiol Ther. 2004;27(6):408–13.

    Article  Google Scholar 

  99. Sadria G, Hosseini M, Rezasoltani A, Akbarzadeh Bagheban A, Davari A, Seifolahi A. A comparison of the effect of the active release and muscle energy techniques on the latent trigger points of the upper trapezius. J Bodyw Mov Ther. 2017;21(4):920–5.

    Article  PubMed  Google Scholar 

  100. Kim JH, Lee HS, Park SW. Effects of the active release technique on pain and range of motion of patients with chronic neck pain. J Phys Ther Sci. 2015;27(8):2461–4.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Al-Bedah AMN, Elsubai IS, Qureshi NA, Aboushanab TS, Ali GIM, El-Olemy AT, et al. The medical perspective of cupping therapy: effects and mechanisms of action. J Tradit Complement Med. 2019;9(2):90–7.

    Article  PubMed  Google Scholar 

  102. Almeida Silva HJ, Barbosa GM, Scattone Silva R, Saragiotto BT, Oliveira JMP, Pinheiro YT, et al. Dry cupping therapy is not superior to sham cupping to improve clinical outcomes in people with non-specific chronic low back pain: a randomised trial. J Physiother. 2021;67:132–9. https://www.sciencedirect.com/science/article/pii/S1836955321000175

    Article  PubMed  Google Scholar 

  103. Al-Shidhani A, Al-Mahrezi A. The role of cupping therapy in pain management: a literature review. In: Pain management—practices, novel therapies and bioactives. IntechOpen; 2021.

    Google Scholar 

  104. Wang Y-T, Qi Y, Tang F-Y, Li F-M, Li Q-H, Xu C-P, et al. The effect of cupping therapy for low back pain: a meta-analysis based on existing randomized controlled trials. J Back Musculoskelet Rehabil. 2017;30:1187–95.

    Article  PubMed  Google Scholar 

  105. de Moura C C, de CL CÉ, ACLR C, Nogueira DA, Corrêa HP, TCM C. Cupping therapy and chronic back pain: systematic review and meta-analysis. Rev Lat Am Enfermagem. 2018:26.

    Google Scholar 

  106. Teut M, Ullmann A, Ortiz M, Rotter G, Binting S, Cree M, et al. Pulsatile dry cupping in chronic low back pain—a randomized three-armed controlled clinical trial. BMC Complement Altern Med. 2018;18(1):115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Azizkhani M, Ghorat F, Soroushzadeh SMA, Karimi M, Yekaninejad S. The effect of cupping therapy on non-specific neck pain: a systematic review and meta-analysis. Iran Red Crescent Med J. 2018;20(7):e55039.

    Google Scholar 

  108. Kim S, Lee S-H, Kim M-R, Kim E-J, Hwang D-S, Lee J, et al. Is cupping therapy effective in patients with neck pain? a systematic review and meta-analysis. BMJ Open. 2018;8:e021070. http://bmjopen.bmj.com/content/8/11/e021070.abstract

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li J-Q, Guo W, Sun Z-G, Huang Q-S, Lee EY, Wang Y, et al. Cupping therapy for treating knee osteoarthritis: the evidence from systematic review and meta-analysis. Complement Ther Clin Pract. 2017;28:152–60. https://www.sciencedirect.com/science/article/pii/S1744388117300750

    Article  PubMed  Google Scholar 

  110. Wang Y-L, An C-M, Song S, Lei F-L, Wang Y. Cupping therapy for knee osteoarthritis: a synthesis of evidence. Complement Med Res. 2018;25:249–55. https://www.karger.com/DOI/10.1159/000488707

    Article  PubMed  Google Scholar 

  111. Mohammadi S, Roostayi MM, Naimi SS, Baghban AA. The effects of cupping therapy as a new approach in the physiotherapeutic management of carpal tunnel syndrome. Physiother Res Int. 2019;24(3):e1770.

    Article  PubMed  Google Scholar 

  112. Charles D, Hudgins T, MacNaughton J, Newman E, Tan J, Wigger M. A systematic review of manual therapy techniques, dry cupping and dry needling in the reduction of myofascial pain and myofascial trigger points. J Bodyw MovTher. 2019;23:539–46. https://www.sciencedirect.com/science/article/pii/S1360859219301147

    Article  Google Scholar 

  113. Bridgett R, Klose P, Duffield R, Mydock S, Lauche R. Effects of cupping therapy in amateur and professional athletes: systematic review of randomized controlled trials. J Altern Complement Med. 2018;24(3):208–19.

    Article  PubMed  Google Scholar 

  114. Musumeci G. Could cupping therapy be used to improve sports performance? J Funct Morphol Therap. 2016;1(4):373–7.

    Google Scholar 

  115. Aboushanab TS, AlSanad S. Cupping therapy: An overview from a modern medicine perspective. J Acupunct Meridian Stud. 2018;11:83–7. https://www.sciencedirect.com/science/article/pii/S2005290117302042

    Article  PubMed  Google Scholar 

  116. Wood S, Fryer G, Tan LLF, Cleary C. Dry cupping for musculoskeletal pain and range of motion: a systematic review and meta-analysis. J Bodyw Mov Ther. 2020;24:503–18. https://www.sciencedirect.com/science/article/pii/S1360859220301030

    Article  PubMed  Google Scholar 

  117. Rozenfeld E, Kalichman L. New is the well-forgotten old: the use of dry cupping in musculoskeletal medicine. J Bodyw Mov Ther. 2016;20(1):173–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, K. (2023). Blood Flow Restriction and Other Innovations in Musculoskeletal Rehabilitation. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics