Skip to main content

Eliminating SF6 from Switchgear

  • Chapter
  • First Online:
Direct Current Fault Protection

Abstract

This chapter provides a brief overview of SF6 use in medium- and high-voltage gas-insulated electrical equipment and the outsized environmental impact of SF6 which has prompted a decades-long search for alternative gases and gas mixtures. Section 2 summarizes the key gas properties required for gas insulators, the early SF6 gas mixture alternatives that were considered, and the recent successes in the development and testing of gas mixtures based on 3 M’s Novec™ 4710 and Novec™ 5110 gas. Section 3 briefly summarizes the life cycle challenges associated with the use of SF6, including leak detection and end-of-life disposal. Section 4 describes the hardware development of new electrical equipment when near drop-in SF6 replacements are not possible or desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The emissions are estimated by using a 1% emission rate on the reported and projected SF6 nameplate capacities (see Fig. 18.1). Of note, the EPA does not require SF6 emission reporting for utility operators with a combined total of 17,820 lbs. SF6 nameplate capacity, and therefore, the numbers available for nameplate capacity may not be complete.

References

  1. Y. Wang, D. Huang, J. Liu, Y. Zhang, L. Zeng, Alternative environmentally friendly insulating gases for SF6. Processes 7(4), 216 (2019). https://doi.org/10.3390/pr7040216

    Article  Google Scholar 

  2. Gas-insulated switchgear market worth $26.5 billion by 2025 – Report by MarketsandMarkets™. https://www.marketsandmarkets.com/PressReleases/gas-insulated-switchgear.asp. Accessed 23 June 2022

  3. O. US EPA, Inventory of U.S. greenhouse gas emissions and sinks: 1990–2015, Apr. 24, 2016. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2015. Accessed 23 June 2022

  4. J. Blackman, M. Averyt, SF6 leak rates from high voltage circuit breakers – U.S. EPA investigates potential greenhouse gas emissions source, p. 4

    Google Scholar 

  5. J.D. McCreary, AEP: A Case Study (San Diego, 2000)

    Google Scholar 

  6. D. Keith, J. Fisher, T. McRae, Experience with Infrared Leak Detection on FPL Switchgear (San Diego, 2000)

    Google Scholar 

  7. Management on SF6 gas for use in electrical power equipment, in Ad-Hoc Task Group on SF6, Switchgear Section (8-SG), Feb. 1998

    Google Scholar 

  8. M. McGrath, Climate change: Electrical industry’s ‘dirty secret’ boosts warming, BBC, Sept. 13, 2019. https://www.bbc.com/news/science-environment-49567197. Accessed 28 June 2022

  9. R.F. Weiss, R.G. Prinn, Quantifying greenhouse-gas emissions from atmospheric measurements: A critical reality check for climate legislation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369(1943), 1925–1942 (2011). https://doi.org/10.1098/rsta.2011.0006

    Article  Google Scholar 

  10. Industry Leader, Presented at the DOE ARPA-E grid hardware annual review, Pittsburgh, PA, Nov. 25, 2022

    Google Scholar 

  11. Power grid long-term outlook 2021, BloombergNEF, Feb. 2021

    Google Scholar 

  12. E. S. R. L. NOAA, NOAA global monitoring laboratory – Sulfur hexafluoride. https://gml.noaa.gov/hats/combined/SF6.html. Accessed 26 Nov 2022

  13. Inventory of U.S. Greenhouse gas emissions and sinks 1990–2019, EPA, EPA 430-R-21-005, Apr. 2021. [Online]. Available: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

  14. V. Roshchanka, SF6 gas storage inventories: Strategies for tracking, EPA, May 08, 2019. [Online]. Available: https://www.epa.gov/sites/default/files/2019-07/documents/sf6storageinventories_webinar_050819.pdf

  15. SF6 emission reduction partnership for electric power systems, EPA, 2014 annual report, Mar. 2015. [Online]. Available: www.epa.gov/electricpower-sf6

  16. L. Niemeyer, A systematic search for insulation gases and their environmental evaluation, in Gaseous Dielectrics VIII, ed. by L.G. Christophorou, J.K. Olthoff, (Springer US, Boston, 1998), pp. 459–464. https://doi.org/10.1007/978-1-4615-4899-7_61

    Chapter  Google Scholar 

  17. L.G. Christophorou, J.K. Olthoff, D.S. Green, Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6 (NIST, Gaithersburg, 1997), Technical Note

    Google Scholar 

  18. Gases superior to SF6 for insulation and interruption, Electric Power Research Institute, EPRI EL-2620, Sept. 1982

    Google Scholar 

  19. D.W. Bouldin, D.R. James, M.O. Pace, L.G. Christophorou, Current assessment of the potential of dielectric gas mixtures for industrial applications, in 4th Intern. Symp. on Gaseous Dielec, Knoxville, Tennessee, Apr. 1984. Accessed 28 June 2022. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1984gadi.symp.....B

  20. D.R. James, M.O. Pace, D.W. Bouldin, L.G. Christophorou, Current assessment of research on insulating gas mixtures and their potential for industrial applications (Oak Ridge National Lab., TN (USA), ORNL/TM-9017, 1984). Accessed 28 June 2022. [Online]. Available: https://www.osti.gov/biblio/5282616

    Google Scholar 

  21. N.H. Malik, A.H. Qureshi, A review of electrical breakdown in mixtures of SF6 and other gases. IEEE Trans. Electr. Insul. EI-14(1), 1–13 (1979). https://doi.org/10.1109/TEI.1979.298198

    Article  Google Scholar 

  22. L.G. Chrisophorou, D.R. James, I. Sauers, M.O. Pace, R.Y. Pai, A. Fatheddin, Ternary Gas Dielectrics. New York, 151–165 (1982). Accessed 28 June 2022. [Online]. Available: https://www.osti.gov/biblio/5279201

  23. K. Nakanishi, New Gaseous insulation. IEEE Trans. Electr. Insul. EI-21(6), 933–937 (1986). https://doi.org/10.1109/TEI.1986.349005

    Article  MathSciNet  Google Scholar 

  24. T. Uchii, Y. Hoshina, H. Kawano, K. Suzuki, T. Nakamoto, M. Toyoda, Fundamental research on SF6-free gas insulated switchgear adopting CO2 gas and its mixtures. Proc. Int. Symp. EcoTopia Sci. ISETS07, 5 (2007)

    Google Scholar 

  25. B. Zhang, J. Xiong, L. Chen, X. Li, A.B. Murphy, Fundamental physicochemical properties of SF6 -alternative gasses: A review of recent progress. J. Phys. Appl. Phys. 53(17), 173001 (2020). https://doi.org/10.1088/1361-6463/ab6ea1

    Article  Google Scholar 

  26. M. Rabie, D.A. Dahl, S.M.A. Donald, M. Reiher, C.M. Franck, Predictors for gases of high electrical strength. IEEE Trans. Dielectr. Electr. Insul. 20(3), 856–863 (2013). https://doi.org/10.1109/TDEI.2013.6518955

    Article  Google Scholar 

  27. M. Rabie, C. Franck, Predicting the electric strength of proposed SF6 replacement gases by means of density functional theory, in ISH – 18th Int. Symp. High Volt. Eng, (2013)

    Google Scholar 

  28. J. Owens, A. Xiao, J. Bonk, M. DeLorme, A. Zhang, Recent development of two alternative gases to SF6 for high voltage electrical power applications. Energies 14, 5051 (2021). https://doi.org/10.3390/en14165051

    Article  Google Scholar 

  29. Y. Kieffel, A. Ficheux, R. Luescher, E. Laruelle, L. Maksoud, SF6 alternative – What to learn from the high voltage experience. AIM (2019). https://doi.org/10.34890/891

  30. L. Chen, X. Li, J. Xiong, A.B. Murphy, M. Fu, R. Zhuo, Chemical kinetics analysis of two C5-perfluorinated ketone (C5 PFK) thermal decomposition products: C4F7O and C3F4O. J. Phys. Appl. Phys. 51(43), 435202 (2018). https://doi.org/10.1088/1361-6463/aade62

    Article  Google Scholar 

  31. X. Li, H. Zhao, A.B. Murphy, SF6-alternative gases for application in gas-insulated switchgear. J. Phys. Appl. Phys. 51(15), 153001 (2018). https://doi.org/10.1088/1361-6463/aab314

    Article  Google Scholar 

  32. K. Pohlink, F. Meyer, J. Owens, Characteritics of Fluoronitrile/CO2 Mixture (Paris, 2016), p. D1-204

    Google Scholar 

  33. P. Simaka, C.B. Doiron, S. Scheel, A. Di-Gianni, Decomposition of Alternative Gaseous Insulation Under Partial Discharge (Buenos Aires, 2017)

    Google Scholar 

  34. B. Zhang et al., Thermal and electrical decomposition products of C5F10O and their compatibility with Cu(111) and Al(111) surfaces. Appl. Surf. Sci. 513, 145882 (2020). https://doi.org/10.1016/j.apsusc.2020.145882

    Article  Google Scholar 

  35. B. Zhang, C. Li, J. Xiong, Z. Zhang, X. Li, Y. Deng, Decomposition characteristics of C4F7N/CO2 mixture under AC discharge breakdown. AIP Adv. 9(11), 115212 (2019). https://doi.org/10.1063/1.5115588

    Article  Google Scholar 

  36. B. Radisavljevic, P.C. Stoller, C.B. Doiron, D. Over, A. Di-Gianni, S. Scheel, Switching Performance of Alternative Gaseous Mixtures in High-Voltage Circuit Breakers (Bueno, 2017)

    Google Scholar 

  37. J. Mantilla, M. Claessens, M. Kriegel, Environmentally friendly perfluoroketones-based mixture as switching medium in high voltage circuit breakers, in CIGRE, (Paris, France, 2016), p. A3-348

    Google Scholar 

  38. P.C. Stoller, J. Hengstler, C.B. Doiron, S. Scheel, P. Simaka, P. Muller, Environmental aspects of high voltage gas-insulated switchgear that uses alternatives to SF6 and monitoring and long-term performance of a pilot installation, in CIGRE, (Paris, France, 2018), p. D1-202

    Google Scholar 

  39. Y.K. Bousoltane Kieffel, L. Maksoud, D. Vigouroux, D. Vancell, P. Teulet, P. Robin-Jouan, Investigation on the influence of the O2 content in fluoronitrile/CO2/O2 (g3) mixtures on the breaking in high voltage circuit breakers, in 22nd International Conference on Gas Discharges and Their Applications, (Novi Sad, Serbia, 2018)

    Google Scholar 

  40. X. Yu, H. Hou, B. Wang, Mechanistic and kinetic investigations on the thermal unimolecular reaction of heptafluoroisobutyronitrile. J. Phys. Chem. A 122(38), 7704–7715 (2018). https://doi.org/10.1021/acs.jpca.8b07189

    Article  Google Scholar 

  41. L. Chen, B. Zhang, J. Xiong, X. Li, A.B. Murphy, Decomposition mechanism and kinetics of iso-C4 perfluoronitrile (C4F7N) plasmas. J. Appl. Phys. 126(16), 163303 (2019). https://doi.org/10.1063/1.5109131

    Article  Google Scholar 

  42. S. Xiao, Y. Li, X. Zhang, S. Tian, Z. Deng, J. Tang, Effects of micro-water on decomposition of the environment-friendly insulating medium C5F10O. AIP Adv. 7(6), 065017 (2017). https://doi.org/10.1063/1.4990512

    Article  Google Scholar 

  43. X. Zhang, Y. Li, S. Xiao, S. Tian, Z. Deng, J. Tang, Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge. J. Phys. Appl. Phys. 50(32), 325201 (2017). https://doi.org/10.1088/1361-6463/aa783a

    Article  Google Scholar 

  44. L. Chen, B. Zhang, T. Yang, Y. Deng, X. Li, A.B. Murphy, Thermal decomposition characteristics and kinetic analysis of C4F7N/CO2 gas mixture. J. Phys. Appl. Phys. 53(5), 055502 (2020). https://doi.org/10.1088/1361-6463/ab56a0

    Article  Google Scholar 

  45. Y. Li et al., Decomposition properties of C4F7N/N2 gas mixture: An environmentally friendly gas to replace SF6. Ind. Eng. Chem. Res. 57(14), 5173–5182 (2018). https://doi.org/10.1021/acs.iecr.8b00010

    Article  Google Scholar 

  46. X. Zhang et al., Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6. Chem. Eng. J. 336, 38–46 (2018). https://doi.org/10.1016/j.cej.2017.11.051

    Article  Google Scholar 

  47. W. Gao et al., Materials compatibility study of C4F7N/CO2 gas mixture for medium-voltage switchgear. IEEE Trans. Dielectr. Electr. Insul. 29(1), 270–278 (2022). https://doi.org/10.1109/TDEI.2022.3146460

    Article  Google Scholar 

  48. Y. Kieffel, T. Irwin, P. Ponchon, J. Owens, Green gas to replace SF6 in electrical grids. IEEE Power Energy Mag. 14(2), 32–39 (2016). https://doi.org/10.1109/MPE.2016.2542645

    Article  Google Scholar 

  49. H.E. Nechmi, A. Beroual, A. Girodet, P. Vinson, Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2587–2593 (2016). https://doi.org/10.1109/TDEI.2016.7736816

    Article  Google Scholar 

  50. Siemens energy and Mitsubishi electric to develop high-voltage switching solutions with zero GWP, Energy Industry Review, June 08, 2021. https://energyindustryreview.com/environment/siemens-energy-and-mitsubishi-electric-to-develop-high-voltage-switching-solutions-with-zero-gwp/. Accessed 07 July 2022

  51. L. Graber, Improving the accuracy of SF6 leakage detection for high voltage switchgear. IEEE Trans. Dielectr. Electr. Insul. 18(6), 1835–1846 (2011). https://doi.org/10.1109/TDEI.2011.6118621

    Article  Google Scholar 

  52. V. Hermosillo, M. Kelly, M. Broglio, Advances in leak detection in the manufacturing process, May 28, 2014. [Online]. Available: https://www.epa.gov/sites/default/files/2016-02/documents/hermosillo-kelly-broglio-alstom-grid-presentation-2014-wkshp.pdf

  53. SF6 Gas Leak Detector (3-033-R501) | DILO Company, Inc. https://dilo.com/sf6-gas/products/measuring-devices/leak-detection-and-monitoring/portable-leak-detector. Accessed 28 June 2022

  54. SF6 transmitter high voltage technology. Draeger, 2019. [Online]. Available: https://www.draeger.com/Products/Content/sf6-transmitter-pi-9107808-en-gb.pdf

  55. T. Heckler, Mitigating potential SF6 leaks through early leak detection, Atlanta, GA, 2012. [Online]. Available: https://www.epa.gov/sites/default/files/2016-02/documents/conf12_heckler.pdf

  56. NDIR Infrared (IR) gas sensor for CO2, methane, SF6, refrigerants, Nano Environmental Technology S.r.l. https://www.nenvitech.com/products/ndir-sensors/. Accessed 28 June 2022

  57. Gas detector – GIR-10 – WIKA. https://www.wika.com/en-us/gir_10.WIKA? Accessed 28 June 2022

  58. Public hearing to consider the proposed amendments to the regulation for reducing sulfur hexafluoride emissions from gas insulated switchgear. California, 2020. [Online]. Available: https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2020/sf6/isor.pdf

  59. S. Blázquez, M. Antiñolo, O.J. Nielsen, J. Albaladejo, E. Jiménez, Reaction kinetics of (CF3)2CFCN with OH radicals as a function of temperature (278–358K): A good replacement for greenhouse SF6? Chem. Phys. Lett. 687, 297–302 (2017). https://doi.org/10.1016/j.cplett.2017.09.039

    Article  Google Scholar 

  60. M.P. Sulbaek Andersen, M. Kyte, S.T. Andersen, C.J. Nielsen, O.J. Nielsen, Atmospheric chemistry of (CF3)2CF–C≡N: A replacement compound for the most potent industrial greenhouse gas, SF6. Environ. Sci. Technol. 51(3), 1321–1329 (2017). https://doi.org/10.1021/acs.est.6b03758

    Article  Google Scholar 

  61. D. Gautschi, R. Luescher, Comparative life cycle assessment of an environmentally friendly 145 kV gas insulated substation, p. 11

    Google Scholar 

  62. V. Hermosillo, E. Laruelle, L. Darles, C. Gregoire, Y. Kieffel, Environmental performance of dead-tank circuit breakers with SF6 and alternative gases, Aug. 2020

    Google Scholar 

  63. R. Kurte, H.M. Heise, D. Klockow, Analysis of spark decomposition products of SF6 using multivariate mid-infrared spectrum evaluation. J. Mol. Struct. 480–481, 211–217 (1999). https://doi.org/10.1016/S0022-2860(98)00642-5

    Article  Google Scholar 

  64. C.-H. Tsai, J.-M. Shao, Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment. J. Hazard. Mater. 157(1), 201–206 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.010

    Article  Google Scholar 

  65. W.-T. Tsai, The decomposition products of sulfur hexafluoride (SF6): Reviews of environmental and health risk analysis. J. Fluor. Chem. 128(11), 1345–1352 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008

    Article  Google Scholar 

  66. H.C. Cowen et al., The reaction of sulphur hexafluoride with sodium. J. Chem. Soc., 4168–4188 (1953). https://doi.org/10.1039/JR9530004168

  67. G.C. Demitras, A.G. MacDiarmid, The low temperature reaction of sulfur hexafluoride with solutions of sodium. Inorg. Chem. 3(8), 1198–1199 (1964). https://doi.org/10.1021/ic50018a033

    Article  Google Scholar 

  68. H.L. Deubner, F. Kraus, The decomposition products of sulfur hexafluoride (SF6) with metals dissolved in liquid ammonia. Inorganics 5(4), 68 (2017). https://doi.org/10.3390/inorganics5040068

    Article  Google Scholar 

  69. S. Bouvet et al., Controlled decomposition of SF6 by electrochemical reduction. Beilstein J. Org. Chem. 16, 2948–2953 (2020). https://doi.org/10.3762/bjoc.16.244

    Article  Google Scholar 

  70. C. Berg, T. Braun, M. Ahrens, P. Wittwer, R. Herrmann, Activation of SF6 at platinum complexes: Formation of SF3 derivatives and their application in deoxyfluorination reactions. Angew. Chem. Int. Ed. 56(15), 4300–4304 (2017). https://doi.org/10.1002/anie.201612417

    Article  Google Scholar 

  71. P. Holze, B. Horn, C. Limberg, C. Matlachowski, S. Mebs, The activation of sulfur hexafluoride at highly reduced low-coordinate nickel dinitrogen complexes. Angew. Chem. Int. Ed. 53(10), 2750–2753 (2014). https://doi.org/10.1002/anie.201308270

    Article  Google Scholar 

  72. L. Zámostná, T. Braun, B. Braun, SÀF and SÀC activation of SF6 and SF5 derivatives at rhodium: Conversion of SF6 into H2S. Angew. Chem. Int. Ed. 53(10), 2745–2749 (2014). https://doi.org/10.1002/anie.201308254

    Article  Google Scholar 

  73. B.G. Harvey, A.M. Arif, A. Glöckner, R.D. Ernst, SF6 as a selective and reactive fluorinating agent for low-valent transition metal complexes. Organometallics 26(11), 2872–2879 (2007). https://doi.org/10.1021/om070175i

    Article  Google Scholar 

  74. R. Basta, B.G. Harvey, A.M. Arif, R.D. Ernst, Reactions of SF6 with organotitanium and organozirconium complexes: The ‘inert’ SF6 as a reactive fluorinating agent. J. Am. Chem. Soc. 127(34), 11924–11925 (2005). https://doi.org/10.1021/ja052214s

    Article  Google Scholar 

  75. M. Wozniak et al., Activation of SF6 at a Xantphos-type rhodium complex. Organometallics 37(5), 821–828 (2018). https://doi.org/10.1021/acs.organomet.7b00858

    Article  Google Scholar 

  76. D. Dirican, N. Pfister, M. Wozniak, T. Braun, Reactivity of binary and ternary sulfur halides towards transition-metal compounds. Chem. Eur. J. 26(31), 6945–6963 (2020). https://doi.org/10.1002/chem.201904493

    Article  Google Scholar 

  77. F. Buß, C. Mück-Lichtenfeld, P. Mehlmann, F. Dielmann, Nucleophilic activation of sulfur hexafluoride: Metal-free, selective degradation by phosphines. Angew. Chem. Int. Ed. 57(18), 4951–4955 (2018). https://doi.org/10.1002/anie.201713206

    Article  Google Scholar 

  78. D.J. Sheldon, M.R. Crimmin, Complete deconstruction of SF 6 by an aluminium(i) compound. Chem. Commun. 57(58), 7096–7099 (2021). https://doi.org/10.1039/D1CC02838C

    Article  Google Scholar 

  79. X. Zhang, G. Zhang, Y. Wu, S. Song, Synergistic treatment of SF 6 by dielectric barrier discharge/γ-Al2O3 catalysis. AIP Adv. 8(12), 125109 (2018). https://doi.org/10.1063/1.5054729

    Article  Google Scholar 

  80. M. Rueping, P. Nikolaienko, Y. Lebedev, A. Adams, Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations. Green Chem. 19(11), 2571–2575 (2017). https://doi.org/10.1039/C7GC00877E

    Article  Google Scholar 

  81. T.A. McTeague, T.F. Jamison, Photoredox activation of SF6 for fluorination. Angew. Chem. Int. Ed. 55(48), 15072–15075 (2016). https://doi.org/10.1002/anie.201608792

    Article  Google Scholar 

  82. D. Rombach, H.-A. Wagenknecht, Photoredox catalytic α-alkoxypentafluorosulfanylation of α-methyl- and α-phenylstyrene using SF6. Angew. Chem. Int. Ed. 59(1), 300–303 (2020). https://doi.org/10.1002/anie.201910830

    Article  Google Scholar 

  83. P. Tomar, T. Braun, E. Kemnitz, Photochemical activation of SF6 by N-heterocyclic carbenes to provide a deoxyfluorinating reagent. Chem. Commun. 54(70), 9753–9756 (2018). https://doi.org/10.1039/C8CC05494K

    Article  Google Scholar 

  84. P. Tomar, T. Braun, E. Kemnitz, Preparation of NHC stabilized Al(III)fluorides: Fluorination of [(SIMes)AlMe3] with SF4 or Me3SnF. Eur. J. Inorg. Chem. 2019(44), 4735–4739 (2019). https://doi.org/10.1002/ejic.201900921

    Article  Google Scholar 

  85. S. Kim, Y. Khomutnyk, A. Bannykh, P. Nagorny, Synthesis of glycosyl fluorides by photochemical fluorination with sulfur(VI) hexafluoride. Org. Lett. 23(1), 190–194 (2021). https://doi.org/10.1021/acs.orglett.0c03915

    Article  Google Scholar 

  86. D. Rombach, H.-A. Wagenknecht, Photoredox catalytic activation of sulfur hexafluoride for pentafluorosulfanylation of α-methyl- and α-phenyl styrene. ChemCatChem 10(14), 2955–2961 (2018). https://doi.org/10.1002/cctc.201800501

    Article  Google Scholar 

  87. H. Wilson, D. Dufournet, H. Mercure, R. Yeckley, History of circuit breakers, in Switching Equipment, ed. by H. Ito, (Springer International Publishing, Cham, 2019), pp. 157–198. https://doi.org/10.1007/978-3-319-72538-3_5

    Chapter  Google Scholar 

  88. L.T. Falkingham, The strengths and weaknesses of vacuum circuit breaker technology, in 2011 1st International Conference on Electric Power Equipment – Switching Technology, (Xi’an, China, Oct. 2011), pp. 701–703. https://doi.org/10.1109/ICEPE-ST.2011.6122975

  89. M. Godbole, A.M. Jain, Double break vacuum circuit breaker — A brief overview, in 2016 10th International Conference on Intelligent Systems and Control (ISCO), (Coimbatore, India, Jan. 2016), pp. 1–4. https://doi.org/10.1109/ISCO.2016.7727112

  90. H.C. Miller, Surface flashover of insulators. IEEE Trans. Electr. Insul. 24(5), 765–786 (1989). https://doi.org/10.1109/14.42158

    Article  Google Scholar 

  91. D. Huang, W. Gaobo, J. Ruan, Study on static and dynamic voltage distribution characteristics and voltage sharing design of a 126-kV modular triple-break vacuum circuit breaker. IEEE Trans. Plasma Sci. 43(8), 2694–2702 (2015). https://doi.org/10.1109/TPS.2015.2449075

    Article  Google Scholar 

  92. G. Ge et al., Experimental investigation into the synergy of vacuum circuit breaker with double-break. IEEE Trans. Plasma Sci. 44(1), 79–84 (2016). https://doi.org/10.1109/TPS.2015.2502241

    Article  Google Scholar 

  93. H. Kojima, T. Takahashi, N. Hayakawa, K. Hasegawa, H. Saito, M. Sakaki, Dependence of spark conditioning on breakdown charge and electrode material under a non-uniform electric field in vacuum. IEEE Trans. Dielectr. Electr. Insul. 23(5), 3224–3230 (2016). https://doi.org/10.1109/TDEI.2016.7736889

    Article  Google Scholar 

  94. C.-H. Lee, B.H. Shin, Y.-B. Bang, Designing a permanent-magnetic actuator for vacuum circuit breakers using the Taguchi method and dynamic characteristic analysis. IEEE Trans. Ind. Electron. 63(3), 1655–1664 (2016). https://doi.org/10.1109/TIE.2015.2494006

    Article  Google Scholar 

  95. B. Zhang et al., A relationship between minimum arcing interrupting capability and opening velocity of vacuum interrupters in short-circuit current interruption. IEEE Trans. Power Delivery 33(6), 2822–2828 (2018). https://doi.org/10.1109/TPWRD.2018.2838344

    Article  Google Scholar 

  96. ABB, Circuit Breaker Basics (Orlando, 2019)

    Google Scholar 

  97. P. Widger, A. Haddad, H. Griffiths, Breakdown performance of vacuum circuit breakers using alternative CF 3 I-CO 2 insulation gas mixture. IEEE Trans. Dielectr. Electr. Insul. 23(1), 14–21 (2016). https://doi.org/10.1109/TDEI.2015.005254

    Article  Google Scholar 

  98. J. Wei, A. Cruz, A. West, F. Haque, C. Park, L. Graber, Theoretical modeling and experimental testing on the electrical breakdown in supercritical fluids, in 2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), (Vancouver, BC, Canada, Dec. 2021), pp. 179–182. https://doi.org/10.1109/CEIDP50766.2021.9705453

  99. C. Xu, J. Wei, L. Graber, Compatibility analysis of piezoelectric actuators in supercritical carbon dioxide, in 2020 IEEE Electrical Insulation Conference (EIC), (Knoxville, TN, USA, June 2020), pp. 171–174. https://doi.org/10.1109/EIC47619.2020.9158670

  100. M. Li, P. Gong, H. Yang, P. Guo, Investigation on the pressure rise and energy balance due to fault arcs in a closed container filled with different insulating gases. IEEE Trans. Plasma Sci. 47(12), 5226–5233 (2019). https://doi.org/10.1109/TPS.2019.2950331

    Article  Google Scholar 

  101. A. Hopf, M. Rossner, F. Berger, U. Prucker, Dielectric strength of alternative insulation gases at high pressure in the homogeneous electric field, in 2015 IEEE Electrical Insulation Conference (EIC), (Seattle, WA, USA, Aug. 2015), pp. 131–136. https://doi.org/10.1109/ICACACT.2014.7223575

  102. A. Hopf, M. Rossner, F. Berger, U. Prucker, Dielectric strength of alternative insulation gases at high pressure in the inhomogeneous electric field, in 2015 IEEE Electrical Insulation Conference (EIC), (Seattle, WA, USA, Aug. 2015), pp. 369–374. https://doi.org/10.1109/ICACACT.2014.7223618

  103. J. Wang, Y. Tan, L. Zhang, Y. Geng, Z. Liu, S. Wang, Conceptual design of a liquid-nitrogen-insulated metal-enclosed switchgear. IEEE Trans. Appl. Supercond. 26(7), 1 (2016). https://doi.org/10.1109/TASC.2016.2587480

    Article  Google Scholar 

  104. B. Xiang et al., AC current interruption by liquid nitrogen in a superconducting fault current limiting switchgear, in 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), (Tianjin, China, Oct. 2020), pp. 1–2. https://doi.org/10.1109/ASEMD49065.2020.9276340

  105. M. Junaid, B. Xiang, J. Wang, Z. Liu, Y. Geng, Experimental test of superconductor fault-current switchgear using liquid nitrogen as the insulation and arc-quenching medium. IEEE Trans. Appl. Supercond. 29(5), 1 (2019). https://doi.org/10.1109/TASC.2019.2898523

    Article  Google Scholar 

  106. H. Hofmann, C. Weindl, M.I. Al-Amayreh, O. Nilsson, Arc movement inside an AC/DC circuit breaker working with a novel method of arc guiding: Part I—Experiments, examination, and analysis. IEEE Trans. Plasma Sci. 40(8), 2028–2034 (2012). https://doi.org/10.1109/TPS.2012.2200697

    Article  Google Scholar 

  107. M.S. Benilov, P.G.C. Almeida, N.G.C. Ferreira, R.M.S. Almeida, G.V. Naidis, A practical guide to modeling low-current quasi-stationary gas discharges: Eigenvalue, stationary, and time-dependent solvers. J. Appl. Phys. 130(12), 121101 (2021). https://doi.org/10.1063/5.0057856

    Article  Google Scholar 

  108. A. Smajkic, B.B. Hadzovic, M. Muratovic, M.H. Kim, M. Kapetanovic, Determination of discharge coefficients for valves of high voltage circuit breakers. IEEE Trans. Power Delivery 35(3), 1278–1284 (2020). https://doi.org/10.1109/TPWRD.2019.2939746

    Article  Google Scholar 

  109. H. Zhang, Z. Wang, M. Li, Y. Yao, J. Li, J. Zhao, Simulation analysis of the breaking process of 550kV 80kA SF6 circuit breaker, in 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), (Chengdu, China, Mar. 2022), pp. 1–5. https://doi.org/10.1109/AEEES54426.2022.9759699

  110. S. Tan, H. Zhang, M. Li, X. Duan, Z. Wang, B. Zhang, Simulation research on breaking performance of 550 kV 80 kA SF6 circuit breaker under different opening characteristics, in 2021 11th International Conference on Power and Energy Systems (ICPES), (Shanghai, China, Dec. 2021), pp. 47–51. https://doi.org/10.1109/ICPES53652.2021.9683917

  111. L.G. Christophorou, P.G. Datskos, Effect of temperature on the formation and autodestruction of parent anions. Int. J. Mass Spectrom. Ion Processes 149(150), 59–77 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Special thanks to Dr. Sade Ruffin for her contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isik C. Kizilyalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yedinak, E., Lentijo, K., Kizilyalli, I.C. (2023). Eliminating SF6 from Switchgear. In: Kizilyalli, I.C., Shen, Z.J., Cunningham, D.W. (eds) Direct Current Fault Protection. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-26572-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26572-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26571-6

  • Online ISBN: 978-3-031-26572-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics