Skip to main content

Abstract

Machine learning is becoming a fundamental tool in current energy systems. It helps to obtain accurate predictions of the variable renewable energy (VRE) generation, energy demand, or possible network outages, conferring to power system operators the possibility to make the needed actions to balance load and generation in intraday and day-ahead scheduling with benefits for operational costs, environmental impact, and system reliability. If the short-term forecasting is fundamental for operational aspects, the long-term forecasting is crucial for system planning. Moreover, an improvement in the granularity of the forecasting can help to go towards real-time solutions. The machine learning can be employed effectively in all these contexts. This chapter deals with a critical analysis of machine learning methods and techniques for renewable-based energy systems showing the advantages of introducing these novel approaches in future energetic scenarios through discussing some relevant case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this context, reference is made to the concept of the confidence estimate of the predictive models. Recently the term trustworthy ML is used to indicate ML models that are explainable, fair, robust, causal and that preserve privacy.

  2. 2.

    https://dvc.org/

  3. 3.

    https://neptune.ai/

  4. 4.

    https://wandb.ai/

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

ARIMA:

Autoregressive integrated moving average

CART:

Classification and Regression Tree

CNN:

Convolutional neural network

DER:

Distributed energy resources

DL:

Deep learning

FCM:

Fuzzy C-Means

FCNN:

Fully connected neural network

FFNN:

Feed forward neural network

FL:

Fuzzy logic

GAN:

Generative adversarial network

GRU:

Gated recurrent unit

HME:

Hierarchical mixture of experts

HVAC:

Heating, ventilation, and air conditioning

LightGBM:

Light Gradient Boosting Machine

LSTM:

Long short-term memory

LTLF:

Long-term load forecast

ML:

Machine learning

MLP:

Multilayer perceptron

MTLF:

Medium-term load forecast

N-BEATS:

Neural basis expansion analysis for interpretable time series

NWP:

Numerical weather prediction

PV:

Photovoltaic

RES:

Renewable energy sources

RNN:

Recurrent neural network

STLF:

Short-term load forecast

SVM:

Support vector machine

SVR:

Support Vector Regression

TCN:

Temporal convolutional network

XGBoost:

eXtreme Gradient Boosting

References

  1. Abbasi, R., Javaid, N., Ghuman, M., Khan, Z., & Rehman, S. A. (2019). Short term load forecasting using XGBoost. In L. Barolli, M. Takizawa, F. Xhafa, E. T. In, L. Barolli, M. Takizawa, F. Xhafa, & T. Enokido (Eds.), Intelligent system and computing. Springer Cham.

    Google Scholar 

  2. Agrawal, R., Muchahary, F., & Tripathi, M. (2018). Long term load forecasting with hourly predictions based on long-short-term-memory networks. In 2018 IEEE Texas power and energy conference (TPEC). https://doi.org/10.1109/TPEC.2018.8312088

  3. Ahmadi-Karvigh, S., Ghahramani, A., Becerik-Gerber, B., & Soibelman, L. (2018). Real-time activity recognition for energy efficiency in buildings. Applied Energy, 211, 146–160.

    Article  Google Scholar 

  4. Ahn, Y., & Kim, B. (2022). Prediction of building power consumption using transfer learning-based reference building and simulation dataset. Energy and Buildings, 258, 111717.

    Article  Google Scholar 

  5. Akhter, M., Mekhilef, S., Mokhlis, H., & Mohamed Shah, N. (2019, March 27). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 13, 1009–1023. https://doi.org/10.1049/iet-rpg.2018.5649

    Article  Google Scholar 

  6. Akram, M., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., et al. (2019, December). CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 189, 116319. https://doi.org/10.1016/j.energy.2019.116319

    Article  Google Scholar 

  7. Alemazkoor, N., Tootkaboni, M., Nateghi, R., & Louhghalam, A. (2022). Smart-meter big data for load forecasting: An alternative approach to clustering. IEEE Access, 10, 8377–8387. https://doi.org/10.1109/ACCESS.2022.3142680

    Article  Google Scholar 

  8. Ali, D., Yohanna, M., Ijasini, P., & Garkida, M. (2018). Application of fuzzy–neuro to model weather parameter variability impacts on electrical load based on long-term forecasting. Alexandria Engineering Journal, 57(1), 223–233.

    Article  Google Scholar 

  9. Aly, H. (2020). A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electric Power Systems Research, 182, 106191.

    Article  Google Scholar 

  10. Angelopoulos, A., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv. https://doi.org/10.48550/ARXIV.2107.07511

  11. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-De-Pison, F., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/10.1016/j.solener.2016.06.069

    Article  Google Scholar 

  12. Askari, M., & Keynia, F. (2019). Mid-term electricity load forecasting by a new composite method based on optimal learning MLP algorithm. IET Generation, Transmission and Distribution, 14, 845–852.

    Article  Google Scholar 

  13. Atrigna, M., Buonanno, A., Carli, R., Cavone, G., Scarabaggio, P., Valenti, M., et al. (2021, September 7). Effects of heatwaves on the failure of power distribution grids: A fault prediction system based on machine learning. In 2021 IEEE international conference on environment and electrical engineering and 2021 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe) (pp. 1–5). IEEE. https://doi.org/10.1109/eeeic/icpseurope51590.2021.9584751

  14. Banik, A., Behera, C., Sarathkumar, T., & Goswami, A. (2020, October). Uncertain wind power forecasting using LSTM-based prediction interval. IET Renewable Power Generation, 14, 2657–2667. https://doi.org/10.1049/iet-rpg.2019.1238

    Article  Google Scholar 

  15. Barzola-Monteses, J., Gómez-Romero, J., Espinoza-Andaluz, M., & Fajardo, W. (2021). Hydropower production prediction using artificial neural networks: An Ecuadorian application case. Neural Computing and Applications, 34, 13253–13266.

    Article  Google Scholar 

  16. Benavides Cesar, L., Amaro e Silva, R., Manso Callejo, M., & Cira, C.-I. (2022, June 14). Review on Spatio-temporal solar forecasting methods driven by In situ measurements or their combination with satellite and numerical weather prediction (NWP) estimates. Energies, 15, 4341. https://doi.org/10.3390/en15124341

    Article  Google Scholar 

  17. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., & Gentine, P. (2021). Enforcing analytic constraints in neural networks emulating physical systems. Physical Review Letter, 126, 098302. https://doi.org/10.1103/PhysRevLett.126.098302

    Article  MathSciNet  Google Scholar 

  18. Boukabara, S.-A., Krasnopolsky, V., Stewart, J. Q., Maddy, E. S., Shahroudi, N., & Hoffman, R. N. (2019). Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges. In The 1st NOAA workshop on leveraging AI in the exploitation of satellite earth observations & numerical weather prediction (pp. ES473–ES491). https://doi.org/10.1175/BAMS-D-18-0324.1

  19. Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. (2020). Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies, 13, 391.

    Article  Google Scholar 

  20. Buonanno, A., Caliano, M., Pontecorvo, A., Sforza, G., Valenti, M., & Graditi, G. (2022). Global vs. local models for short-term electricity demand prediction in a residential/lodging scenario. Energies, 15, 2037. https://doi.org/10.3390/en15062037

    Article  Google Scholar 

  21. Buonanno, A., Nogarotto, A., Cacace, G., Di Gennaro, G., Palmieri, F., Valenti, M., & Graditi, G. (2021). Bayesian feature fusion using factor graph in reduced normal form. Applied Sciences, 11, 1934. https://doi.org/10.3390/app11041934

    Article  Google Scholar 

  22. Caliano, M., Buonanno, A., Graditi, G., Pontecorvo, A., Sforza, G., & Valenti, M. (2020). Consumption based-only load forecasting for individual households in nanogrids: A case study. In Proceedings of the 12th AEIT international annual conference. https://doi.org/10.23919/AEIT50178.2020.924112

  23. Cauchi, N., Macek, K., & Abate, A. (2017, November). Model-based predictive maintenance in building automation systems with user discomfort. Energy, 138, 306–315. https://doi.org/10.1016/j.energy.2017.07.104

    Article  Google Scholar 

  24. Cecati, C., Kolbusz, J., Rozycki, P., Siano, P., & Wilamowski, B. (2015). A novel RBF training algorithm for short-term electric load forecasting and compararitve studies. IEEE Transactions on Industrial Electronics, 62(10), 6519–6529.

    Article  Google Scholar 

  25. Cerrai, D., Wanik, D., Bhuiyan, M., Zhang, X., Yang, J., Frediani, M., & Anagnostou, E. (2019). Predicting storm outages through new representations of weather and vegetation. IEEE Access, 7, 29639–29654. https://doi.org/10.1109/access.2019.2902558

    Article  Google Scholar 

  26. Cuncu, E., Manca, M., Pes, B., & Riboni, D. (2022). Towards context-aware power forecasting in smart-homes. Procedia Computer Science, 198, 243–248.

    Article  Google Scholar 

  27. Deihimi, A., Orang, O., & Showkati, H. (2017). Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy, 57, 382–401.

    Article  Google Scholar 

  28. Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., & Riess, C. (2019, June). Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 185, 455–468. https://doi.org/10.1016/j.solener.2019.02.067

    Article  Google Scholar 

  29. Di Somma, M., & Graditi, G. (2022a). Challenges and opportunities of the energy transition and the added value of energy systems integration. In Technologies for integrated energy systems and networks (pp. 1–14). Wiley. https://doi.org/10.1002/9783527833634.ch1

  30. Di Somma, M., & Graditi, G. (2022b, March 25). Integrated energy systems: The engine for energy transition. In Technologies for integrated energy systems and networks (pp. 15–40). Wiley. https://doi.org/10.1002/9783527833634.ch2

  31. Ding, L. (2018). Human knowledge in constructing AI systems — Neural logic networks approach towards an explainable AI. Procedia Computer Science, 126, 1561–1570. https://doi.org/10.1016/j.procs.2018.08.129

    Article  Google Scholar 

  32. Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., & Ogliari, E. (2015, February 3). A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies, 8, 1138–1153. https://doi.org/10.3390/en8021138

    Article  MATH  Google Scholar 

  33. Dong, M., & Grumbach, L. (2019). A hybrid distribution feeder long-term load forecasting method based on sequence prediction. IEEE Transaction on Smart Grid, 11, 470–482.

    Article  Google Scholar 

  34. Droste, A., Heusinkveld, B., Fenner, D., & Steeneveld, G.-J. (2020, June 15). Assessing the potential and application of crowdsourced urban wind data. Quarterly Journal of the Royal Meteorological Society, 146, 2671–2688. https://doi.org/10.1002/qj.3811

    Article  Google Scholar 

  35. Dudek, G., Pełka, P., & Smyl, S. (2022). A hybrid residual dilated LSTM and exponential smoothing model for midterm electric load forecasting. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2879–2891.

    Article  Google Scholar 

  36. Ebrahim, A. F., & Mohammed, O. A. (2018). Pre-processing of energy demand disaggregation based data mining techniques for household load demand forecasting. Inventions, 45(3), 45.

    Article  Google Scholar 

  37. Edwards, R., New, J., & Parker, L. (2012). Predicting future hourly residential electrical consumption: A machine learning case study. Energy and Buildings, 49, 591–603.

    Article  Google Scholar 

  38. Ehsan, R. M., Simon, S. P., & Venkateswaran, P. R. (2017). Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Computation Application, 28(12), 3981–3992.

    Article  Google Scholar 

  39. Eskandarpour, R., Khodaei, A., & Arab, A. (2017, September). Improving power grid resilience through predictive outage estimation. In 2017 North American Power Symposium (NAPS), Morgantown, WV, USA. IEEE. https://doi.org/10.1109/naps.2017.8107262

  40. Fahiman, F., Erfani, S. M., Rajasegarar, S., Palaniswami, M., & Leckie, C. (2017). Improving load forecasting based on deep learning and K-shape clustering. In 2017 international joint conference on neural networks (IJCNN). https://doi.org/10.1109/IJCNN.201

  41. Fan, C., Sun, Y., Xiao, F., Ma, J., Lee, D., Wang, J., & Tseng, Y. (2020). Statistical investigations of transfer learning-based methodology for short-term building energy predictions. Applied Energy, 262, 114499.

    Article  Google Scholar 

  42. Fan, S., Chen, L., & Lee, W. (2009). Short-term load forecasting using comprehensive combination based on multimeteorological information. IEEE Transactions on Industry Applications, 45(4), 1460–1466.

    Article  Google Scholar 

  43. Gajowniczek, K., & Ząbkowski, T. (2015). Data mining techniques for detecting household characteristics based on smart meter data. Energies, 8(7), 7407–7427.

    Article  Google Scholar 

  44. Gastinger, J., Nicolas, S., Stepić, D., Schmidt, M., & Schülke, A. (2021). A study on ensemble learning for time series forecasting and the need for meta-learning. In International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN523

  45. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 20). MIT Press. https://doi.org/10.1097/00006223-199507000-00010

    Book  MATH  Google Scholar 

  46. Gul, M., Urfa, G., Paul, A., Moon, J., Rho, S., & Hwang, E. (2021). Mid-term electricity load prediction using CNN and Bi-LSTM. The Journal of Supercomputing, 77, 10942.

    Article  Google Scholar 

  47. Gupta, P., & Singh, R. (2021). PV power forecasting based on data-driven models: A review. International Journal of Sustainable Engineering, 6, 1733.

    Article  Google Scholar 

  48. Hafeez, G., Alimgeer, K., & Khan, I. (2020, July). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Applied Energy, 269, 114915. https://doi.org/10.1016/j.apenergy.2020.114915

    Article  Google Scholar 

  49. He, Y., Zhixin, H., & Sick, B. (2021). Toward application of continuous power forecasts in a regional flexibility market. In 2021 international joint conference on neural networks (IJCNN). https://doi.org/10.1109/IJCNN52387.2021.9533626

  50. Hewamalage, H., Bergmeir, C., & Bandara, K. (2022). Global models for time series forecasting: A simulation study. Pattern Recognition, 2022, 124.

    Google Scholar 

  51. Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., & Zareipour, H. (2020). Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376–388. https://doi.org/10.1109/oajpe.2020.3029979

    Article  Google Scholar 

  52. Huang, C.-J., & Kuo, P.-H. (2019). Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting. IEEE Access, 7, 74822–74834. https://doi.org/10.1109/access.2019.2921238

    Article  Google Scholar 

  53. Irena. (2020). Innovation landscape brief: Advanced forecasting of variable renewable power generation. International Renewable Energy Agency.

    Google Scholar 

  54. Iyer, A., Nguyen, L., & Khushu, S. (2021). Learning to identify cracks on wind turbine blade surfaces using drone-based inspection images. In NeurIPS 2021 workshop on tackling climate change with machine learning (p. 2021). Retrieved from https://www.climatechange.ai/papers/neurips2021/37

  55. Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L. (2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36, 167–177.

    Article  Google Scholar 

  56. Jeong, C., & Yi, M. (2023). Correcting rainfall forecasts of a numerical weather prediction model using generative adversarial networks. The Journal of Supercomputing, 79, 1289.

    Article  Google Scholar 

  57. Kaaya, I., & Ascencio-Vásquez, J. (2021). Photovoltaic power forecasting methods. In D. M. Aghaei (Ed.), Solar radiation – measurements, modeling and forecasting for photovoltaic solar energy applications. IntechOpen. https://doi.org/10.5772/intechopen.97049

    Chapter  Google Scholar 

  58. Kalaitzakis, K., Stavrakakis, G., & Anagnostakis, E. (2002). Shortterm load forecasting based on artificial neural networks parallel implementation. Electric Power Systems Research, 63(3), 185–196.

    Article  Google Scholar 

  59. Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2019). Machine learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering, 31(8), 1544. https://doi.org/10.1109/TKDE.2018.2861006

    Article  Google Scholar 

  60. Kisvari, A., Lin, Z., & Liu, X. (2021, January). Wind power forecasting – A data-driven method along with gated recurrent neural network. Renewable Energy, 163, 1895–1909. https://doi.org/10.1016/j.renene.2020.10.119

    Article  Google Scholar 

  61. Kodogiannis, V., & Anagnostakis, E. (1999). A study of advanced learning algorithms for short-term load forecasting. Artificial Intelligence, 12(2), 159–173.

    Google Scholar 

  62. Kong, W., Dong, Z., Hill, D., Luo, F., & Xu, Y. (2018). Short-term residential load forecasting based on resident behaviour learning. IEEE Transactions on Power Systems, 33, 1087–1088. https://doi.org/10.1109/TPWRS.2017.2688178

    Article  Google Scholar 

  63. Kumar, S., Hussain, L., Banarjee, S., & Reza, M. (2018). Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster. In 2018 fifth international conference on emerging applications of information technology (EAIT), Kolkata, India. https://doi.org/10.1109/EAIT.2018.8470406

  64. Laptev, N., Yosinski, J., Erran Li, L., & Smyl, S. (2017). Time-series extreme event forecasting with neural networks at Uber. Proceedings of the International Conference of Machine Learning.

    Google Scholar 

  65. Lee, K., Cha, Y., & Park, J. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Apparatus and Systems, 7(1), 124–132.

    Article  Google Scholar 

  66. Li, L., Ota, K., & Dong, M. (2017). Everything is image: CNN-based short-term electrical load forecasting for smart grid. ISPAN-FCST-ISCC.

    Google Scholar 

  67. Li, T., Qian, Z., & He, T. (2020). Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM. Complexity, 2020, 1.

    Article  Google Scholar 

  68. Liao, W., Bak-Jensen, B., Radhakrishna Pillai, J., Wang, Y., & Wang, Y. (2022, March). A review of graph neural networks and their applications in power systems. Journal of Modern Power Systems and Clean Energy, 10, 345–360. https://doi.org/10.35833/mpce.2021.000058

    Article  Google Scholar 

  69. Liu, X., Xie, L., Wang, Y., Zou, J., Xiong, J., Ying, Z., & Vasilakos, A. (2021). Privacy and security issues in deep learning: A survey. IEEE Access, 9, 4566–4593. https://doi.org/10.1109/access.2020.3045078

    Article  Google Scholar 

  70. Liu, Z., Sun, X., Wang, S., Pan, M., Zhang, Y., & Ji, Z. (2019). Midterm power load forecasting model based on kernel principal component analysis and back propagation neural network with particle swarm optimization. Big Data, 7, 130–138.

    Article  Google Scholar 

  71. Lorenz, E., Scheidsteger, T., Hurka, J., Heinemann, D., & Kurz, C. (2010). Regional PV power prediction for improved grid integration. Progress in Photovoltaics, 19, 757. https://doi.org/10.1002/pip.1033

    Article  Google Scholar 

  72. Madaus, L., & Mass, C. (2017, March 3). Evaluating smartphone pressure observations for mesoscale analyses and forecasts. Weather and Forecasting, 32, 511–531. https://doi.org/10.1175/waf-d-16-0135.1

    Article  Google Scholar 

  73. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36, 54–74.

    Article  Google Scholar 

  74. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022, January). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting, 38, 1346. https://doi.org/10.1016/j.ijforecast.2021.11.013

    Article  Google Scholar 

  75. Mandal, P., Senjyu, T., Urasaki, N., & Funabashi, T. (2006). A neural network based severalhour-ahead electric load forecasting using similar days approach. International Journal of Electrical Power & Energy Systems, 28(6), 367–373.

    Article  Google Scholar 

  76. Mantel, C., Villebro, F., Alves Dos Reis Benatto, G., Rajesh Parikh, H., Wendlandt, S., Hossain, K., et al. (2019, September 6). Machine learning prediction of defect types for electroluminescence images of photovoltaic panels. In Applications of machine learning (Vol. 11139, p. 1113904). SPIE. https://doi.org/10.1117/12.2528440

  77. Massaoudi, M., Chihi, I., Abu-Rub, H., Refaat, S., & Oueslati, F. (2021). Convergence of photovoltaic power forecasting and deep learning: State-of-art review. IEEE Access, 9, 136593–136615. https://doi.org/10.1109/access.2021.3117004

    Article  Google Scholar 

  78. Massaoudi, M., Chihi, I., Sidhom, L., Trabelsi, M., Refaat, S., & Oueslati, F. (2019, November). Performance evaluation of deep recurrent neural networks architectures: Application to PV power forecasting. In 2019 2nd international conference on smart grid and renewable energy (SGRE) (pp. 1–6). IEEE. https://doi.org/10.1109/sgre46976.2019.9020965

  79. Mat Daut, M., Hassan, M., Abdullah, H., Rahman, H., Abdullah, M., & Hussin, F. (2017). Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renewable and Sustainable Energy Reviews, 70, 1108–1111.

    Article  Google Scholar 

  80. McGovern, A., Ebert-Uphoff, I., Gagne, D., & Bostrom, A. (2022). Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science. Environmental Data Science, 1, E6. https://doi.org/10.1017/eds.2022.5

    Article  Google Scholar 

  81. McGovern, A., Lagerquist, R., John Gagne, D., Jergensen, G., Elmore, K., Homeyer, C., & Smith, T. (2019, November). Making the black box more transparent: Understanding the physical implications of machine learning. Bulletin of the American Meteorological Society, 100, 2175–2199. https://doi.org/10.1175/bams-d-18-0195.1

    Article  Google Scholar 

  82. Methaprayoon, K., Lee, W., Rasmiddatta, S., Liao, J., & Ross, R. (2007). Multistage artificial neural network short-term load forecasting engine with front-end weather forecast. IEEE Transactions on Industry Applications, 43(6), 1410–1416.

    Article  Google Scholar 

  83. Mitchell, T. (1997). Machine learning. McGraw-Hill.

    MATH  Google Scholar 

  84. Ml-Cmu. (2020). Machine learning – Carnegie Mellon University Blog. Retrieved from https://blog.ml.cmu.edu/2020/08/31/5-reproducibility/

  85. Mocanu, E., Nguyen, P., Kling, W., & Gibescu, M. (2016). Unsupervised energy prediction in a smart grid context using reinforcement cross-building transfer learning. Energy and Buildings, 116, 646–655.

    Article  Google Scholar 

  86. Molnar, C. (2022). Interpretable machine learning: A guide for making black box models explainable. Retrieved from https://christophm.github.io/interpretable-ml-book/

  87. Montero-Manso, P., & Hyndman, R. (2021). Principles and algorithms for forecasting groups of time series: Locality and globality. International Journal of Forecasting, 37, 1632–1653.

    Article  Google Scholar 

  88. Moon, J., Jung, S., Rew, J., Rho, S., & Hwang, E. (2020). Combination of short-term load forecasting models based on a stacking ensemble approach. Energy and Buildings, 216, 109921.

    Article  Google Scholar 

  89. Murphy, K. (2022). Probabilistic machine learning: An introduction. MIT Press.

    MATH  Google Scholar 

  90. Nalcaci, G., Özmen, A., & Weber, G. (2019). Long-term load forecasting: Models based on MARS, ANN and LR methods. Central European Journal of Operations Research, 27, 1033–1049.

    Article  MathSciNet  MATH  Google Scholar 

  91. Nepal, B., Yamaha, M., Yokoe, A., & Yamaji, T. (2019). Electricity load forecasting using clustering and ARIMA model for energy management in buildings. Japan Architectural Review, 3, 62. https://doi.org/10.1002/2475-8876.12135

    Article  Google Scholar 

  92. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. Bellevue, Washington, USA. https://dl.acm.org/doi/10.5555/3104482.3104569

  93. Omitaomu, O., & Niu, H. (2021, April 22). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4, 548–568. https://doi.org/10.3390/smartcities4020029

    Article  Google Scholar 

  94. Onose, E. (2021). Neptune Blog. Retrieved from https://neptune.ai/blog/how-to-solve-reproducibility-in-ml

  95. Paletta, Q., & Lasenby, J. (2019). Convolutional neural networks applied to sky images for short-term solar irradiance forecasting. In 37th European photovoltaic solar energy conference and exhibition (pp. 1834–1837). https://doi.org/10.4229/EUPVSEC20202020-6BV.5.15

  96. Pan, S., & Yang, Q. A. (2010). Survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359.

    Article  Google Scholar 

  97. Papalexopoulos, A., Hao, S., & Peng, T.-M. (1994). An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Apparatus and Systems, 9(4), 1956–1962.

    Article  Google Scholar 

  98. Pelland, S., Galanis, G., & Kallos, G. (2013). Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Progress in Photovoltaics: Research and Applications, 21, 284–296. https://doi.org/10.1002/pip.1180

    Article  Google Scholar 

  99. Pirbazari, A. M., Farmanbar, M., Chakravorty, A., & Rong, C. (2020). Improving load forecast accuracy of households using load disaggregation techniques. In 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Rhodes, Greece, 2020 (pp. 843–851). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00140

  100. Pratt, L., Govender, D., & Klein, R. (2021, November). Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation. Renewable Energy, 178, 1211–1222. https://doi.org/10.1016/j.renene.2021.06.086

    Article  Google Scholar 

  101. Qiu, X., Suganthan, P., & Amaratunga, G. (2018). Ensemble incremental learning random vector functional link network for short-term vector functional link network for short-term electric load forecasting. Knowledge-Based Sytems, 145, 182–196.

    Article  Google Scholar 

  102. Quilumba, F. L., Lee, W.-J., Huang, H., Wang, D. Y., & Szabados, R. L. (2015). Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Transactions on Smart Grid, 6(2), 911–918. https://doi.org/10.1109/TSG.2014.2364233

    Article  Google Scholar 

  103. Rafati, A., Joorabian, M., & Mashhour, E. (2020, June). An efficient hour-ahead electrical load forecasting method based on innovative features. Energy, 201, 117511. https://doi.org/10.1016/j.energy.2020.117511

    Article  Google Scholar 

  104. Rai, S., & De, M. (2021). Analysis of classical and machine learning based short-term and mid-term load forecasting for smart grid. International Journal of Sustainable Energy, 40(9), 821–839.

    Article  Google Scholar 

  105. Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., et al. (2021, September 29). Skilful precipitation nowcasting using deep generative models of radar. Nature, 597, 672–677. https://doi.org/10.1038/s41586-021-03854-z

    Article  Google Scholar 

  106. Ribeiro, M., Grolinger, K., El Yamany, H., Higashino, W., & Capretz, M. (2018). Transfer learning with seasonal and trend adjustment for cross-building energy forecasting. Energy and Buildings, 165, 352–363.

    Article  Google Scholar 

  107. Rivas, A. E., & Abrao, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602

    Article  Google Scholar 

  108. Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. ICT Discoveries. Retrieved from http://handle.itu.int/11.1002/pub/8129fdff-en

    Google Scholar 

  109. Sangrody, H., Zhou, N., Tutun, S., Khorramdel, B., Motalleb, M., & Sarailoo, M. (2018). Long term forecasting using machine learning methods. In 2018 IEEE power and energy conference at Illinois (PECI), Champaign, IL, USA. https://doi.org/10.1109/PECI.2018.8334980

  110. Senocak, A. A., & Guner Goren, H. (2022). Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Engineering Science and Technology, an International Journal, 26, 100992.

    Article  Google Scholar 

  111. Shahzadeh, A., Khosravi, A., & Nahavandi, S. (2015). Improving load forecast accuracy by clustering consumers using smart meter data. In 2015 international joint conference on neural networks (IJCNN), Killarney, Ireland (pp. 1–7). https://doi.org/10.1109/IJCNN.2015.7280393

  112. Shi, H., Xu, M., & Li, R. (2018). Deep learning for household load forecasting – a novel pooling deep RNN. IEEE Transactions on Smart Grid, 9, 5271–5280. https://doi.org/10.1109/TSG.2017.2686012

    Article  Google Scholar 

  113. Shin, W., Han, J., & Rhee, W. (2021, April). AI-assistance for predictive maintenance of renewable energy systems. Energy, 221, 119775. https://doi.org/10.1016/j.energy.2021.119775

    Article  Google Scholar 

  114. Siddiqui, T. A., Bharadwaj, S., & Kalyanaraman, S. (2019). A deep learning approach to solar-irradiance forecasting in sky-videos. In 2019 IEEE winter conference on applications of computer vision (WACV) (pp. 2166–2174). https://doi.org/10.1109/WACV.2019.00234

  115. Singh, R., Gao, P., & Lizotte, D. (2013). On hourly home peak load prediction. In IEEE international conference on smart grid communications. https://doi.org/10.1109/SmartGridComm.2012.6485977

  116. Söderberg, M. J., & Meurling, A. (2019). Feature selection in short-term load forecasting.

    Google Scholar 

  117. Srinivasan, D. (1998). Evolving artificial neural networks for short term load forecasting. Neurocomputing, 23, 265–276.

    Article  Google Scholar 

  118. Stankeviciute, K., Alaa, A. M., & Van der Schaar, M. (2021). Conformal time-series forecasting. In Advances in neural information processing systems 34 (NeurIPS 2021).

    Google Scholar 

  119. Tamimi, M., & Egbert, R. (2000). Short term electric load forecasting via fuzzy neural collaboration. Electric Power Systems Research, 56(3), 243–248.

    Article  Google Scholar 

  120. Tervo, R., Láng, I., Jung, A., & Mäkelä, A. (2021, February 11). Predicting power outages caused by extratropical storms. Natural Hazards and Earth System Sciences, 21, 607–627. https://doi.org/10.5194/nhess-21-607-2021

    Article  Google Scholar 

  121. Tian, T., & Chernyakhovkiy, I. (2016). Forecasting wind and solar generation: Improving system operations.

    Google Scholar 

  122. Veit, A., Goebel, C., Tidke, R., Doblander, C., & Jacobsen, H. (2014). Household electricity demand forecasting: Benchmarking state-of-the-art methods. In e-Energy’14: Proceedings of the 5th international conference on future energy systems. https://doi.org/10.1145/2602044.2602082

  123. Wagner, N., Michalewicz, Z., Schellenberg, S., Chirac, C., & Mohais, A. (2011). Intelligent techniques for forecasting multiple time series in real-world systems. International Journal of Intelligent Computing and Cybernetics, 4, 284–310.

    Article  MathSciNet  Google Scholar 

  124. Wang, J., Liang, Y., Zheng, Y., Gao, R. X., & Zhang, F. (2020). An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Renewable Energy, 145, 642–650. https://doi.org/10.1016/j.renene.2019.06.103

    Article  Google Scholar 

  125. Wang, K., Qi, X., & Liu, H. (2019, December). Photovoltaic power forecasting based LSTM-convolutional network. Energy, 189, 116225. https://doi.org/10.1016/j.energy.2019.116225

    Article  Google Scholar 

  126. Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021, December). A review of wind speed and wind power forecasting with deep neural networks. Applied Energy, 304, 117766. https://doi.org/10.1016/j.apenergy.2021.117766

    Article  Google Scholar 

  127. Wijaya, T. K., Vasirani, M., Humeau, S., & Aberer, K. (2015). Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In 2015 IEEE international conference on big data (big data). https://doi.org/10.1109/BigData.2015.73

  128. Wilms, H., Cupelli, M., Monti, A., & Gross, T. (2019, March). Exploiting Spatio-temporal dependencies for RNN-based wind power forecasts. In 2019 IEEE PES GTD grand international conference and exposition Asia (GTD Asia) (pp. 921–926). IEEE. https://doi.org/10.1109/gtdasia.2019.8715887

  129. Wu, D., Wang, B., Precup, D., & Boulet, B. (2020). Multiple Kernel learning-based transfer regression for electric load forecasting. IEEE Transactions on Smart Grid, 11, 1183–1192.

    Article  Google Scholar 

  130. Yang, J., Luo, F., Kong, W., & Dong, Z. (2021). Load forecasting in the short-term scheduling of DERs. In Distributed energy resources in local integrated energy systems (pp. 389–417). Elsevier. https://doi.org/10.1016/b978-0-12-823899-8.00003-0

  131. Zhang, C., Chen, Z., & Zhou, J. (2020). Research on short-term load forecasting using K-means clustering and CatBoost integrating time series features. In 2020 39th Chinese control conference (CCC). https://doi.org/10.23919/CCC50068.2020.9188856

  132. Zhang, F., Deb, C., Lee, S., Yang, J., & Shah, K. W. (2016). Time series forecasting for building energy consumption using weighted support vector regression with differential evolution optimization technique. Energy and Buildings, 12, 94–103.

    Article  Google Scholar 

  133. Zhang, X., Grolinger, K., Capretz, M., & Seewald, L. (2018). Forecasting residential energy consumption: Single household perspective. In 17th IEEE international conference on machine learning and applications, Orlando, FL, USA. IEEE.

    Google Scholar 

  134. Zhao, H., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586–3592.

    Article  Google Scholar 

  135. Zheng, J., Xu, C., Zhang, Z., & Li, X. (2017). Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network. In 2017 51st annual conference on information sciences and systems (CISS), Baltimore, MD, USA.

    Google Scholar 

  136. Zheng, Y. (2015, March 1). Methodologies for cross-domain data fusion: An overview. IEEE Transactions on Big Data, 1, 16–34. https://doi.org/10.1109/tbdata.2015.2465959

    Article  Google Scholar 

  137. Zhou, S., Zhou, L., Mao, M., & Xi, X. (2020, February). Transfer learning for photovoltaic power forecasting with long short-term memory neural network. In 2020 IEEE international conference on big data and smart computing (BigComp) (pp. 125–132). IEEE. https://doi.org/10.1109/bigcomp48618.2020.00-87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Buonanno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graditi, G., Buonanno, A., Caliano, M., Di Somma, M., Valenti, M. (2023). Machine Learning Applications for Renewable-Based Energy Systems. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics