Skip to main content

Depth Estimation of Traffic Scenes from Image Sequence Using Deep Learning

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13763))

Included in the following conference series:

Abstract

Autonomous cars can accurately perceive the deployment of traffic scenes and the distance between visual objects in the scenarios through understanding the depth. Therefore, the depth estimation of scenes is a crucial step in the obstacle avoidance and pedestrian protection from autonomous vehicles. In this paper, a method for stereo depth estimation based on image sequences is introduced. In this project, we improve the performance of deep learning-based model by combining depth hints algorithm and MobileNetV2 encoder to enhance the loss function and increases computing speed. To the best of our knowledge, this is the first time MobileNetV2 is applied to depth estimation based on KITTI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li,Y., Tong, G., Yang, J., Zhang, L. Peng, H.: 3D point cloud scene data ac-quisition and its key technologies for scene understanding. Laser Optoelectron. Prog., 040002 (2019)

    Google Scholar 

  2. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2019). https://doi.org/10.1007/s11263-019-01247-4

    Article  MATH  Google Scholar 

  3. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep learning in drug discovery. Drug Discovery Today 23, 1241–1250 (2019)

    Article  Google Scholar 

  4. Husain, F., Dellen, B., Torras, C.: Scene understanding using deep learning, pp. 373–382. Academic Press, Cambridge (2017)

    Google Scholar 

  5. Yang, S., Wang, W., Liu, C., Deng, W.: Scene understanding in deep learning-based end-to-end controllers for autonomous vehicles. IEEE Trans. Syst. Man Cybernet. Syst. 49, 53–63 (2019)

    Article  Google Scholar 

  6. Lecun, Y., Muller, U., Ben, J., Cosatto, E., Flepp, B.: Off-road obstacle avoidance through end-to-end learning. In: International Conference on Neural Information Processing Systems, pp. 739–746 (2005)

    Google Scholar 

  7. Ohsugi, H., Tabuchi, H., Enno, H., Ishitobi, N.: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting hematogenous retinal detachment. Sci. Rep. 7(1), 9425 (2017)

    Article  Google Scholar 

  8. Li, F., Deng, J., Li, K.: ImageNet: constructing a largescale image database. J. Vis. 9(8), 1037–1038 (2009)

    Google Scholar 

  9. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  10. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: IEEE International Conference on Computer Vision, pp. 2650–2658 (2014)

    Google Scholar 

  11. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  12. Godard, C., Aodha, O., Gabriel, J.: Unsupervised monocular depth estimation with left-right consistency. In: IEEE CVPR, pp. 270–279 (2017)

    Google Scholar 

  13. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. 01, 1 (2020)

    Google Scholar 

  14. Miangoleh, S.M., Dille, S., Mai, L., Paris, S., Aksoy, Y.: Boosting monocular depth estimation models to high-resolution via content-adaptive multi-resolution merging. IEEE CVPR, pp. 9685–9694 (2021)

    Google Scholar 

  15. Zhao, C., Sun, Q., Zhang, C., Tang, Y., Qian, F.: Monocular depth estimation based on deep learning: an overview. Sci. China Technol. Sci. 63(9), 1612–1627 (2020). https://doi.org/10.1007/s11431-020-1582-8

    Article  Google Scholar 

  16. Ochs, M., Kretz, A., Mester, R.: SDNet: semantically guided depth estimation network. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 288–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_20

    Chapter  Google Scholar 

  17. Darabi, A., Maldague, X.: Neural network based defect detection and depth es-timation in TNDE. NDT E Int. 35, 165–175 (2012)

    Article  Google Scholar 

  18. Zama Ramirez, P., Poggi, M., Tosi, F., Mattoccia, S., Di Stefano, L.: Geometry meets semantics for semi-supervised monocular depth estimation. In: Jawahar, C.V., Li, Hongdong, Mori, Greg, Schindler, Konrad (eds.) ACCV 2018. LNCS, vol. 11363, pp. 298–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_19

    Chapter  Google Scholar 

  19. Repala, V.K., Dubey, S.R.: Dual CNN models for unsupervised monocular depth estimation. In: Deka, Bhabesh, Maji, Pradipta, Mitra, Sushmita, Bhattacharyya, Dhruba Kumar, Bora, Prabin Kumar, Pal, Sankar Kumar (eds.) PReMI 2019. LNCS, vol. 11941, pp. 209–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34869-4_23

    Chapter  Google Scholar 

  20. Honauer, K., Johannsen, O., Kondermann, D., Goldluecke, B.: A dataset and evaluation methodology for depth estimation on 4D light fields. In: Lai, S.H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 19–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_2

    Chapter  Google Scholar 

  21. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  22. Dan, X. et al. Multiscale continuous CRFs as sequential deep networks for monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5354–5362 (2017)

    Google Scholar 

  23. Liu, J., Li, Q., Cao, R., et al.: MiniNet: an extremely lightweight convolutional neural network for real-time unsupervised monocular depth estimation. ISPRS J. Photogrammetry Remote Sens. 166, 255–267 (2020)

    Article  Google Scholar 

  24. Hu, J., Zhang, Y.Z., Takayuki, O.: Visualization of convolutional neural networks for monocular depth estimation. In: International Conference on Computer Vision, pp. 3869–3878 (2019)

    Google Scholar 

  25. Ding, X., Wang, Y., Zhang, J., et al.: Underwater image dehaze using scene depth estimation with adaptive color correction. In: OCEANS, pp.1–5 (2017)

    Google Scholar 

  26. Torralba, A., Aude, O.: Depth estimation from image structure. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1226–1238 (2002)

    Article  MATH  Google Scholar 

  27. Song, W., et al.: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. In: Pacific Rim Conference on Multimedia, pp.1–9 (2018)

    Google Scholar 

  28. Rajagopalan, A., Chaudhuri, S., Mudenagudi, U.: Depth estimation and image restoration using defocused stereo pairs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1521–1525 (2014)

    Article  Google Scholar 

  29. Chen, P., et al.: Towards scene understanding: unsupervised monocular depth estimation with semantic-aware representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2624–2632 (2019)

    Google Scholar 

  30. Watson, J., Firman, M., Brostow, G.J., Turmukhambetov, D.: Self-supervised monocular depth hints. In: IEEE International Conference on Computer Vision, pp. 2162–2171 (2019)

    Google Scholar 

  31. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)

    Google Scholar 

  32. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  33. Godard, C., Aodha, O.M., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: IEEE International Conference on Computer Vision, pp. 3828–3838 (2019)

    Google Scholar 

  34. Liu, X., Yan, W.Q.: Traffic-light sign recognition using capsule network. Multimed. Tools Appl. 80(10), 15161–15171 (2021). https://doi.org/10.1007/s11042-020-10455-x

    Article  Google Scholar 

  35. Liu, X., Yan, W.: Vehicle-related scene segmentation using CapsNets. In: IEEE IVCNZ (2020)

    Google Scholar 

  36. Liu, X., Neuyen, M., Yan, W.Q.: Vehicle-related scene understanding using deep learning. In: Cree, Michael, Huang, Fay, Yuan, Junsong, Yan, Wei Qi (eds.) ACPR 2019. CCIS, vol. 1180, pp. 61–73. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3651-9_7

    Chapter  Google Scholar 

  37. Liu, X.: Vehicle-related Scene Understanding Using Deep Learning. Master’s Thesis, Auckland University of Technology, New Zealand (2019)

    Google Scholar 

  38. Mehtab, S., Yan, W.: FlexiNet: fast and accurate vehicle detection for autonomous vehicles-2D vehicle detection using deep neural network. In: ACM ICCCV (2021)

    Google Scholar 

  39. Mehtab, S., Yan, W.: Flexible neural network for fast and accurate road scene perception. Multimed. Tools Appl. 81, 7169–7181 (2021). https://doi.org/10.1007/s11042-022-11933-0

    Article  Google Scholar 

  40. Mehtab, S., Yan, W., Narayanan, A.: 3D vehicle detection using cheap LiDAR and camera sensors. In: IEEE IVCNZ (2021)

    Google Scholar 

  41. Yan, W.: Computational Methods for Deep Learning: Theoretic Practice and Applications. Springer, Berlin (2021)

    Book  MATH  Google Scholar 

  42. Yan, W.: Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, and Analytics. Springer, Berlin (2019)

    Book  Google Scholar 

  43. Gu, Q., Yang, J., Kong, L., Yan, W., Klette, R.: Embedded and real-time vehicle detection system for challenging on-road scenes. Opt. Eng. 56(6), 06310210 (2017)

    Article  Google Scholar 

  44. Ming, Y., Li, Y., Zhang, Z., Yan, W.: A survey of path planning algorithms for autonomous vehicles. Int. J. Commercial Veh. 14, 97–109 (2021)

    Google Scholar 

  45. Shen, D., Xin, C., Nguyen, M., Yan, W.: Flame detection using deep learning. In: International Conference on Control, Automation and Robotics (2018)

    Google Scholar 

  46. Xin, C., Nguyen, M., Yan, W.: Multiple flames recognition using deep learning. In: Handbook of Research on Multimedia Cyber Security, pp. 296–307 (2020)

    Google Scholar 

  47. Luo, Z., Nguyen, M., Yan, W.: Kayak and sailboat detection based on the im-proved YOLO with transformer. In: ACM ICCCV (2022)

    Google Scholar 

  48. Le, R., Nguyen, M., Yan, W.: Training a convolutional neural network for transportation sign detection using synthetic dataset. In: IEEE IVCNZ (2021)

    Google Scholar 

  49. Pan, C., Yan, W.Q.: Object detection based on saturation of visual perception. Multimed. Tools Appl. 79(27–28), 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x

    Article  Google Scholar 

  50. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qi Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Yan, W.Q. (2023). Depth Estimation of Traffic Scenes from Image Sequence Using Deep Learning. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26431-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26430-6

  • Online ISBN: 978-3-031-26431-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics