Skip to main content

Improving Automated Baggage Inspection Using Simulated X-ray Images of 3D Models

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13763))

Included in the following conference series:

  • 347 Accesses

Abstract

X-ray baggage inspection is essential to ensure transport and border security, as it prevents hazardous objects from entering secure areas. Currently, deep learning is the state-of-the-art approach for automated threat object detection and classification. Proper training of these networks requires substantial data; however, the number of publicly available datasets of X-ray images is limited. To overcome this problem, we propose a method for generating new data by superimposing simulated X-ray images of 3D models onto real baggage X-rays, allowing researchers to train deep neural networks without requiring additional imaging or manual labeling. To validate our proposal, we ran experiments using 3D models of wrenches and the SIXray baggage dataset. The results prove that superimposing synthetic threat objects over a real training subset improves detection performance, with average precision (AP) increasing from 90.2% to 93.7%. As modern object detectors process images in real-time, they prove themselves as a feasible approach for aiding inspectors and even fully automating baggage inspection. Moreover, the novel superimposition and colorization techniques presented in this study can be employed in other areas of X-ray imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some 3D model websites are Sketchfab, Turbosquid, Thingiverse, and Printables.

  2. 2.

    Available at https://github.com/anthonytec2/xrayscanner.

  3. 3.

    Script that extracts data from a website.

  4. 4.

    Available at https://github.com/ultralytics/yolov5.

  5. 5.

    Available at https://github.com/kaminetzky/axis.

References

  1. Akcay, S., Breckon, T.: Towards automatic threat detection: a survey of advances of deep learning within X-ray security imaging. Pattern Recogn. 122, 108245 (2022)

    Article  Google Scholar 

  2. Akçay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1057–1061 (2016)

    Google Scholar 

  3. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203–2215 (2018)

    Article  Google Scholar 

  4. Bellon, C., Jaenisch, G.-R.: aRTist-analytical RT inspection simulation tool. In: Proceedings of the DIR, pp. 25–27 (2007)

    Google Scholar 

  5. Berger, M., et al.: XCOM: Photon Cross Section Database (version 1.5). http://physics.nist.gov/xcom. Accessed 30 May 2022

  6. Bhowmik, N., Wang, Q., Gaus, Y.F.A., Szarek, M., Breckon, T.P.: The good, the bad and the ugly: evaluating convolutional neural networks for prohibited item detection using real and synthetically composited X-ray imagery. arXiv preprint arXiv:1909.11508 (2019)

  7. Caldwell, M., Griffin, L.D.: Limits on transfer learning from photographic image data to X-ray threat detection. J. Xray Sci. Technol. 27(6), 1007–1020 (2019)

    Google Scholar 

  8. Dmitruk, K., Denkowski, M., Mazur, M., Mikolajczak, P.: Sharpening filter for false color imaging of dual-energy X-ray scans. Signal Image Video Process. 11(4), 613–620 (2017)

    Google Scholar 

  9. Duvillier, J., et al.: Inline multi-material identification via dual energy radiographic measurements. NDT E Int. 94, 120–125 (2018)

    Article  Google Scholar 

  10. Faragó, T., Mikulık, P., Ershov, A., Vogelgesang, M., Hänschke, D., Baumbach, T.: Syris: a flexible and efficient framework for X-ray imaging experiments simulation. J. Synchrotron Radiat. 24(6), 1283–1295 (2017)

    Article  Google Scholar 

  11. Firsching, F., Fuchs, T., Uhlmann, N.: Method for dual high energy X-ray imaging with at panel detectors (2006)

    Google Scholar 

  12. Jocher, G., et al.: Ultralytics/YOLOv5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, version v6.1 (2022)

    Google Scholar 

  13. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Mery, D.: Computer Vision for X-Ray Testing. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20747-6

    Book  MATH  Google Scholar 

  17. Mery, D., Kaminetzky, A., Golborne, L., Figueroa, S., Saavedra, D.: Target detection by target simulation in X-ray testing. J. Nondestr. Eval. 41(1), 1–12 (2022). https://doi.org/10.1007/s10921-022-00851-8

    Article  Google Scholar 

  18. Mery, D., Katsaggelos, A.K.: A logarithmic X-ray imaging model for baggage inspection: simulation and object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 57–65 (2017)

    Google Scholar 

  19. Mery, D., Saavedra, D., Prasad, M.: X-ray baggage inspection with computer vision: a survey. IEEE Access 8, 145620–145633 (2020)

    Article  Google Scholar 

  20. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision techniques for x-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern.: Syst. 47(4), 682–692 (2016)

    Article  Google Scholar 

  21. Miao, C., et al.: SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2119–2128 (2019)

    Google Scholar 

  22. Michel, S., Koller, S., de Ruiter, J., Moerland, R., Hogervorst, M., Schwaninger, A.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 201–206 (2007)

    Google Scholar 

  23. Nguyen, H.D., Cai, R., Zhao, H., Kot, A.C., Wen, B.: Towards more efficient security inspection via deep learning: a task-driven X-ray image cropping scheme. Micromachines 13(4), 565 (2022)

    Article  Google Scholar 

  24. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  26. Rogers, T.W., Jaccard, N., Protonotarios, E.D., Ollier, J., Morton, E.J., Griff-in, L.D.: Threat Image Projection (TIP) into X-ray images of cargo containers for training humans and machines. In: 2016 IEEE International Carnahan Conference on Security Technology (ICCST), pp. 1–7 (2016)

    Google Scholar 

  27. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with X-ray images using deep learning. Neural Comput. Appl. 33(13), 7803–7819 (2021)

    Article  Google Scholar 

  28. Tao, R., et al.: Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10923–10932 (2021)

    Google Scholar 

  29. Ultralytics: Tips for best training results. https://docs.ultralytics.com/tutorials/training-tips-best-results/. Accessed 30 May 2022

  30. Wei, Y., Tao, R., Wu, Z., Ma, Y., Zhang, L., Liu, X.: Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 138–146 (2020)

    Google Scholar 

  31. Yang, J., Zhao, Z., Zhang, H., Shi, Y.: Data augmentation for X-ray prohibited item images using generative adversarial networks. IEEE Access 7, 28894–28902 (2019)

    Article  Google Scholar 

  32. Zhao, C., Zhu, L., Dou, S., Deng, W., Wang, L.: Detecting overlapped objects in X-ray security imagery by a label-aware mechanism. IEEE Trans. Inf. Forensics Secur. 17, 998–1009 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID, and ANID National Master’s Scholarship 2021 N\(^\circ \)22211094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Kaminetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaminetzky, A., Mery, D. (2023). Improving Automated Baggage Inspection Using Simulated X-ray Images of 3D Models. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26431-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26430-6

  • Online ISBN: 978-3-031-26431-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics