Skip to main content

Masked Graph Auto-Encoder Constrained Graph Pooling

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13714))

Abstract

The node drop pooling is a significant type of graph pooling that is required for learning graph-level representations. However, existing node drop pooling models still suffer from the information loss problem, impairing their effectiveness in graph classification. To mitigate the detrimental effect of the information loss, we propose a novel and flexible technique called Masked Graph Auto-encoder constrained Pooling (MGAP), which enables vanilla node drop pooling methods to retain sufficient effective graph information from both node-attribute and network-topology perspectives. Specifically, MGAP reconstructs the original node attributes of the graph using a graph convolutional network and the node degree of the graph (i.e., structural information) using a feedforward neural network with exponential neurons from the pooled (masked) graphs generated by the vanilla node drop pooling models. Notably, MGAP is a plug-and-play technique that can be directly adopted in the current node drop pooling methods. To evaluate the effectiveness of MGAP, we conduct extensive experiments on eleven real-world datasets by applying MGAP to three commonly-used methods, i.e., TopKPool, SAGPool, and GSAPool. The experimental results reveal that MGAP has the capacity to consistently improve the performance of all the three node drop pooling models in the graph classification task.

C. Liu—This work has been done when Chuang Liu was an intern at JD Explore Academy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some very specific cases, there exists \( |\mathcal {V}^{\prime }| \ge |\mathcal {V}| \), causing the graph to be up scaled by pooling.

  2. 2.

    The source code is available at https://github.com/liucoo/mgap.

References

  1. Baek, J., Kang, M., Hwang, S.J.: Accurate learning of graph representations with graph multiset pooling. In: ICLR (2021)

    Google Scholar 

  2. Bai, L., Jiao, Y., Cui, L., Hancock, E.R.: Learning aligned-spatial graph convolutional networks for graph classification. In: ECML-PKDD, pp. 464–482 (2019)

    Google Scholar 

  3. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural networks for graph pooling. In: ICML. vol. 119, pp. 874–883 (2020)

    Google Scholar 

  4. Cai, C., Wang, D., Wang, Y.: Graph coarsening with neural networks. In: ICLR (2021)

    Google Scholar 

  5. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NeurIPS, pp. 2224–2232 (2015)

    Google Scholar 

  6. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks for graph classification. In: ICLR (2020)

    Google Scholar 

  7. Gao, H., Ji, S.: Graph u-nets. In: ICML, pp. 2083–2092 (2019)

    Google Scholar 

  8. Gao, X., Dai, W., Li, C., Xiong, H., Frossard, P.: ipool-information-based pooling in hierarchical graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 5032–5044 (2021)

    Google Scholar 

  9. Grattarola, D., Zambon, D., Bianchi, F.M., Alippi, C.: Understanding pooling in graph neural networks. arXiv:2110.05292 (2021)

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  12. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NeurIPS Workshop on Bayesian Deep Learning (2016)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  14. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: ICML, pp. 3734–3743 (2019)

    Google Scholar 

  15. Li, J., Li, J., Liu, Y., Yu, J., Li, Y., Cheng, H.: Deconvolutional networks on graph data. In: NeurIPS (2021)

    Google Scholar 

  16. Li, M., Chen, S., Zhang, Y., Tsang, I.: Graph cross networks with vertex infomax pooling. In: NeurIPS, vol. 33, pp. 14093–14105 (2020)

    Google Scholar 

  17. Li, X., et al.: Braingnn: Interpretable brain graph neural network for fmri analysis. Med. Image Anal. 73, 102233 (2021)

    Google Scholar 

  18. Li, X., Zhang, H., Zhang, R.: Adaptive graph auto-encoder for general data clustering. IEEE Trans. Patt. Anal. Mach. Intell. 44(12), 9725–9732 (2021)

    Google Scholar 

  19. Liu, C., Zhan, Y., Li, C., Du, B., Wu, J., Hu, W., Liu, T., Tao, D.: Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv:2204.07321 (2022)

  20. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with eigenpooling. In: SIGKDD, pp. 723–731 (2019)

    Google Scholar 

  21. Mathieu, E., Le Lan, C., Maddison, C.J., Tomioka, R., Teh, Y.W.: Continuous hierarchical representations with poincaré variational auto-encoders. In: NeurIPS (2019)

    Google Scholar 

  22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Ann. Rev. sociol. 27(1), 415–444 (2001)

    Google Scholar 

  23. Mesquita, D., Souza, A., Kaski, S.: Rethinking pooling in graph neural networks. In: NeurIPS. vol. 33, pp. 2220–2231 (2020)

    Google Scholar 

  24. Park, J., Cho, J., Chang, H.J., Choi, J.Y.: Unsupervised hyperbolic representation learning via message passing auto-encoders. In: CVPR, pp. 5516–5526 (2021)

    Google Scholar 

  25. Park, J., Lee, M., Chang, H.J., Lee, K., Choi, J.Y.: Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: ICCV, pp. 6519–6528 (2019)

    Google Scholar 

  26. Rhee, S., Seo, S., Kim, S.: Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. In: IJCAI, pp. 3527–3534 (2018)

    Google Scholar 

  27. Salha, G., Hennequin, R., Remy, J.B., Moussallam, M., Vazirgiannis, M.: Fastgae: scalable graph autoencoders with stochastic subgraph decoding. Neural Netw. 142, 1–19 (2021)

    Article  Google Scholar 

  28. Salha, G., Hennequin, R., Tran, V.A., Vazirgiannis, M.: A degeneracy framework for scalable graph autoencoders. In: IJCAI, pp. 3353–3359 (2019)

    Google Scholar 

  29. Salha, G., Hennequin, R., Vazirgiannis, M.: Simple and effective graph autoencoders with one-hop linear models. In: ECML-PKDD, pp. 319–334 (2020)

    Google Scholar 

  30. Salha, G., Limnios, S., Hennequin, R., Tran, V.A., Vazirgiannis, M.: Gravity-inspired graph autoencoders for directed link prediction. In: CIKM, pp. 589–598 (2019)

    Google Scholar 

  31. Sun, D., Li, D., Ding, Z., Zhang, X., Tang, J.: Dual-decoder graph autoencoder for unsupervised graph representation learning. Knowl.-Based Syst. 234, 107564 (2021)

    Article  Google Scholar 

  32. Tang, M., Li, P., Yang, C.: Graph auto-encoder via neighborhood wasserstein reconstruction. In: ICLR (2022)

    Google Scholar 

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  34. Wang, Z., Ji, S.: Second-order pooling for graph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. (2020, early access). https://doi.org/10.1109/TPAMI.2020.2999032

  35. Winter, R., Noé, F., Clevert, D.A.: Permutation-invariant variational autoencoder for graph-level representation learning. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

  37. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS. pp. 4805–4815 (2018)

    Google Scholar 

  38. Yuan, H., Ji, S.: Structpool: Structured graph pooling via conditional random fields. In: ICLR (2020)

    Google Scholar 

  39. Zhang, L., et al.: Structure-feature based graph self-adaptive pooling. In: WWW, pp. 3098–3104 (2020)

    Google Scholar 

  40. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)

    Google Scholar 

  41. Zhang, Z., et al.: Hierarchical multi-view graph pooling with structure learning. IEEE Trans. Knowl. Data Eng. 34(1), 545–559 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China (Nos. 61976162, 82174230, 62002090), Artificial Intelligence Innovation Project of Wuhan Science and Technology Bureau (No.2022010702040070), Science and Technology Major Project of Hubei Province (Next Generation AI Technologies) (No. 2019AEA170), and Joint Fund for Translational Medicine and Interdisciplinary Research of Zhongnan Hospital of Wuhan University (No. ZNJC202016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Zhan, Y., Ma, X., Tao, D., Du, B., Hu, W. (2023). Masked Graph Auto-Encoder Constrained Graph Pooling. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26390-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26389-7

  • Online ISBN: 978-3-031-26390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics