Skip to main content

Augmenting Softmax Information for Selective Classification with Out-of-Distribution Data

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

Abstract

Detecting out-of-distribution (OOD) data is a task that is receiving an increasing amount of research attention in the domain of deep learning for computer vision. However, the performance of detection methods is generally evaluated on the task in isolation, rather than also considering potential downstream tasks in tandem. In this work, we examine selective classification in the presence of OOD data (SCOD). That is to say, the motivation for detecting OOD samples is to reject them so their impact on the quality of predictions is reduced. We show under this task specification, that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection. This is because it is no longer an issue to conflate in-distribution (ID) data with OOD data if the ID data is going to be misclassified. However, the conflation within ID data of correct and incorrect predictions becomes undesirable. We also propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information such that their ability to identify OOD samples is improved without sacrificing separation between correct and incorrect ID predictions. Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD, whilst existing OOD detection methods fail to do so. Code is available at https://github.com/Guoxoug/SIRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\boldsymbol{z}^{P^\bot }\) is the component of the feature vector that lies outside of a principle subspace calculated using ID data. For more details see Wang et al. [48]’s paper.

  2. 2.

    This holds for our chosen \(S_1\) of \(\pi _\text {max}\) and \(-\mathcal H\).

  3. 3.

    To avoid overflow this is implemented using the logaddexp function in PyTorch [40].

  4. 4.

    https://github.com/pytorch/examples/blob/main/imagenet/main.py.

References

  1. Caterini, A.L., Loaiza-Ganem, G.: Entropic issues in likelihood-based ood detection. ArXiv abs/2109.10794 (2021)

    Google Scholar 

  2. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  3. Corbière, C., THOME, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure prediction by learning model confidence. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 2902–2913. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/8556-addressing-failure-prediction-by-learning-model-confidence.pdf

  4. Du, X., Wang, Z., Cai, M., Li, Y.: Vos: Learning what you don’t know by virtual outlier synthesis. ArXiv abs/2202.01197 (2022)

    Google Scholar 

  5. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification. J. Mach. Learn. Res. 11, 1605–1641 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Fort, S., Ren, J., Lakshminarayanan, B.: Exploring the limits of out-of-distribution detection. In: NeurIPS (2021)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. eds.) Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, 20–22 June 2016, pp. 1050–1059. PMLR, New York. https://proceedings.mlr.press/v48/gal16.html

  8. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: NIPS (2017)

    Google Scholar 

  9. Geifman, Y., El-Yaniv, R.: Selectivenet: a deep neural network with an integrated reject option. In: International Conference on Machine Learning, pp. 2151–2159. PMLR (2019)

    Google Scholar 

  10. Geifman, Y., Uziel, G., El-Yaniv, R.: Bias-reduced uncertainty estimation for deep neural classifiers. In: ICLR (2019)

    Google Scholar 

  11. Granese, F., Romanelli, M., Gorla, D., Palamidessi, C., Piantanida, P.: Doctor: a simple method for detecting misclassification errors. In: NeurIPS (2021)

    Google Scholar 

  12. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  14. Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song, D.X.: Scaling out-of-distribution detection for real-world settings. arXiv: Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  15. Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to common corruptions and perturbations. ArXiv abs/1903.12261 (2019)

    Google Scholar 

  16. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. ArXiv abs/1610.02136 (2017)

    Google Scholar 

  17. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. ArXiv abs/1812.04606 (2019)

    Google Scholar 

  18. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.X.: Natural adversarial examples. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15257–15266 (2021)

    Google Scholar 

  19. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: detecting out-of-distribution image without learning from out-of-distribution data. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10948–10957 (2020)

    Google Scholar 

  20. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  21. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: NeurIPS (2021)

    Google Scholar 

  22. Huang, R., Li, Y.: Mos: towards scaling out-of-distribution detection for large semantic space. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8706–8715 (2021)

    Google Scholar 

  23. Jospin, L.V., Laga, H., Boussaid, F., Buntine, W., Bennamoun, M.: Hands-on bayesian neural networks-a tutorial for deep learning users. IEEE Comput. Intell. Mag. 17(2), 29–48 (2022)

    Article  Google Scholar 

  24. Kamath, A., Jia, R., Liang, P.: Selective question answering under domain shift. In: ACL (2020)

    Google Scholar 

  25. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Scientific Reports 6 (2016)

    Google Scholar 

  26. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 5580–5590. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  27. Kim, J., Koo, J., Hwang, S.: A unified benchmark for the unknown detection capability of deep neural networks. ArXiv abs/2112.00337 (2021)

    Google Scholar 

  28. Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., Houlsby, N.: Big transfer (bit): General visual representation learning. In: ECCV (2020)

    Google Scholar 

  29. Krasin, I., et al.: Openimages: a public dataset for large-scale multi-label and multi-class image classification. Dataset available from https://github.com/openimages (2017)

  30. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS (2017)

    Google Scholar 

  31. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  32. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv: Learning (2018)

    Google Scholar 

  33. Liu, W., Wang, X., Owens, J.D., Li, Y.: Energy-based out-of-distribution detection. ArXiv abs/2010.03759 (2020)

    Google Scholar 

  34. Malinin, A., Gales, M.J.F.: Predictive uncertainty estimation via prior networks. In: NeurIPS (2018)

    Google Scholar 

  35. Malinin, A., Mlodozeniec, B., Gales, M.J.F.: Ensemble distribution distillation. ArXiv abs/1905.00076 (2020)

    Google Scholar 

  36. Mesejo, P., Pizarro, D., Abergel, A., Rouquette, O.Y., Béorchia, S., Poincloux, L., Bartoli, A.: Computer-aided classification of gastrointestinal lesions in regular colonoscopy. IEEE Trans. Med. Imaging 35(9), 2051–2063 (2016)

    Google Scholar 

  37. Moon, J., Kim, J., Shin, Y., Hwang, S.: Confidence-aware learning for deep neural networks. In: ICML (2020)

    Google Scholar 

  38. Mukhoti, J., Kirsch, A., van Amersfoort, J.R., Torr, P.H.S., Gal, Y.: Deterministic neural networks with appropriate inductive biases capture epistemic and aleatoric uncertainty. ArXiv abs/2102.11582 (2021)

    Google Scholar 

  39. Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? ArXiv abs/1810.09136 (2019)

    Google Scholar 

  40. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  41. Pearce, T., Brintrup, A., Zhu, J.: Understanding softmax confidence and uncertainty. ArXiv abs/2106.04972 (2021)

    Google Scholar 

  42. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/1e79596878b2320cac26dd792a6c51c9-Paper.pdf

  43. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  44. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  45. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activations. In: NeurIPS (2021)

    Google Scholar 

  46. Techapanurak, E., Suganuma, M., Okatani, T.: Hyperparameter-free out-of-distribution detection using cosine similarity. In: Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020

    Google Scholar 

  47. Van Horn, G., et al.: The inaturalist species classification and detection dataset (2017). https://arxiv.org/abs/1707.06642

  48. Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: Out-of-distribution with virtual-logit matching. ArXiv abs/2203.10807 (2022)

    Google Scholar 

  49. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. ArXiv abs/2110.11334 (2021)

    Google Scholar 

  50. Zhang, M., Zhang, A., McDonagh, S.G.: On the out-of-distribution generalization of probabilistic image modelling. In: NeurIPS (2021)

    Google Scholar 

Download references

Acknowledgements

GX’s PhD is funded jointly by Arm and the EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxuan Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5207 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, G., Bouganis, CS. (2023). Augmenting Softmax Information for Selective Classification with Out-of-Distribution Data. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics