Skip to main content

Learning to Predict Decomposed Dynamic Filters for Single Image Motion Deblurring

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 680 Accesses

Abstract

This paper tackles the large motion variation problem in the single image dynamic scene deblurring task. Although fully convolutional multi-scale-based designs have recently advanced the state-of-the-art in single image motion deblurring. However, these approaches usually utilize vanilla convolution filters, which are not adapted to each spatial position. Consequently, it is hard to handle large motion blur variations at the pixel level. In this work, we propose Decomposed Dynamic Filters (DDF), a highly effective plug-and-play adaptive operator, to fulfill the goal of handling large motion blur variations across different spatial locations. In contrast to conventional dynamic convolution-based methods, which only predict either weight or offsets of the filter from the local feature at run time, in our work, both the offsets and weight are adaptively predicted from multi-scale local regions. The proposed operator comprises two components: 1) the offsets estimation module and 2) the pixel-specific filter weight generator. We incorporate the DDF into a lightweight encoder-decoder-based deblurring architecture to verify the performance gain. Extensive experiments conducted on the GoPro, HIDE, Real Blur, SIDD, and DND datasets demonstrate that the proposed method offers significant improvements over the state-of-the-art in accuracy as well as generalization capability. Code is available at: https://github.com/ZHIQIANGHU2021/DecomposedDynamicFilters.

Z. Hu—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_13

    Chapter  Google Scholar 

  2. Liu, G., Chang, S., Ma, Y.: Blind image deblurring using spectral properties of convolution operators. IEEE Trans. Image Process. 23, 5047–5056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tran, P., Tran, A.T., Phung, Q., Hoai, M.: Explore image deblurring via encoded blur kernel space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11956–11965 (2021)

    Google Scholar 

  4. Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neural blind deconvolution using deep priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3341–3350 (2020)

    Google Scholar 

  5. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  6. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  7. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1439–1451 (2015)

    Article  Google Scholar 

  8. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  9. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  10. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)

    Google Scholar 

  11. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  12. Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 327–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_20

    Chapter  Google Scholar 

  13. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  14. Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)

    Google Scholar 

  15. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: half instance normalization network for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–192 (2021)

    Google Scholar 

  16. Suin, M., Purohit, K., Rajagopalan, A.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3606–3615 (2020)

    Google Scholar 

  17. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  18. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

  19. Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz, J.: Pixel-adaptive convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11166–11175 (2019)

    Google Scholar 

  20. Zamora Esquivel, J., Cruz Vargas, A., Lopez Meyer, P., Tickoo, O.: Adaptive convolutional kernels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops(2019)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  23. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019)

    Google Scholar 

  24. Yuan, Y., Su, W., Ma, D.: Efficient dynamic scene deblurring using spatially variant deconvolution network with optical flow guided training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3555–3564 (2020)

    Google Scholar 

  25. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4641–4650 (2021)

    Google Scholar 

  26. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

    Google Scholar 

  27. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  28. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  29. Mao, X., Liu, Y., Shen, W., Li, Q., Wang, Y.: Deep residual Fourier transformation for single image deblurring. arXiv preprint arXiv:2111.11745 (2021)

  30. Zhang, Y., Zhang, J., Wang, Q., Zhong, Z.: DyNet: dynamic convolution for accelerating convolutional neural networks. arXiv preprint arXiv:2004.10694 (2020)

  31. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  32. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  33. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: CARAFE: content-aware reassembly of features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3007–3016 (2019)

    Google Scholar 

  34. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: CARAFE++: unified content-aware reassembly of features. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4674–4687 (2021)

    Google Scholar 

  35. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

    Google Scholar 

  36. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)

    Google Scholar 

  37. Xu, Y.S., Tseng, S.Y.R., Tseng, Y., Kuo, H.K., Tsai, Y.M.: Unified dynamic convolutional network for super-resolution with variational degradations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12496–12505 (2020)

    Google Scholar 

  38. Magid, S.A., et al.: Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4288–4297 (2021)

    Google Scholar 

  39. Liu, J., He, J., Qiao, Yu., Ren, J.S., Li, H.: Learning to predict context-adaptive convolution for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 769–786. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_46

    Chapter  Google Scholar 

  40. He, J., Deng, Z., Qiao, Y.: Dynamic multi-scale filters for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3562–3572 (2019)

    Google Scholar 

  41. Xu, C., et al.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1

    Chapter  Google Scholar 

  42. Xu, M., Ding, R., Zhao, H., Qi, X.: PAConv: position adaptive convolution with dynamic kernel assembling on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3173–3182 (2021)

    Google Scholar 

  43. Wang, Z., Miao, Z., Hu, J., Qiu, Q.: Adaptive convolutions with per-pixel dynamic filter atom. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12302–12311 (2021)

    Google Scholar 

  44. Shen, Z., et al.: Human-aware motion deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  45. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and benchmarking deblurring algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 184–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_12

    Chapter  Google Scholar 

  46. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  47. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  48. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  49. Zhang, K., et al.: Deblurring by realistic blurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2737–2746 (2020)

    Google Scholar 

  50. Purohit, K., Suin, M., Rajagopalan, A., Boddeti, V.N.: Spatially-adaptive image restoration using distortion-guided networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2309–2319 (2021)

    Google Scholar 

  51. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  52. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595 (2017)

    Google Scholar 

  53. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  55. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  56. Zhuo, S., Jin, Z., Zou, W., Li, X.: RIDNet: recursive information distillation network for color image denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  57. Yue, Z., Zhao, Q., Zhang, L., Meng, D.: Dual adversarial network: toward real-world noise removal and noise generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 41–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_3

    Chapter  Google Scholar 

  58. Chang, M., Li, Q., Feng, H., Xu, Z.: Spatial-adaptive network for single image denoising. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 171–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_11

    Chapter  Google Scholar 

  59. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2696–2705 (2020)

    Google Scholar 

  60. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30

    Chapter  Google Scholar 

  61. Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., Liu, S.: NBNet: noise basis learning for image denoising with subspace projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4896–4906 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7365 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Yu, T. (2023). Learning to Predict Decomposed Dynamic Filters for Single Image Motion Deblurring. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics