Skip to main content

Self-supervised Augmented Patches Segmentation for Anomaly Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Included in the following conference series:

Abstract

In this paper, our goal is to detect unknown defects in high-resolution images in the absence of anomalous data. Anomaly detection is usually performed at image-level or pixel-level. Considering that pixel-level anomaly classification achieves better representation learning in a finer-grained manner, we regard data augmentation transforms as a self-supervised segmentation task from which to extract the critical and representative information from images. Due to the unpredictability of anomalies in real scenarios, we propose a novel abnormal sample simulation strategy which augmented patches are randomly pasted to original image to create a generalized anomalous pattern. Following the framework of self-supervised, segmenting augmented patches is used as a proxy task in the training phase to extract representation separating normal and abnormal patterns, thus constructing a one-class classifier with a robust decision boundary. During the inference phase, the classifier is used to perform anomaly detection on the test data, while directly determining regions of unknown defects in an end-to-end manner. Our experimental results on MVTec AD dataset and BTAD dataset demonstrate the proposed SSAPS outperforms any other self-supervised based methods in anomaly detection. Code is available at https://github.com/BadSeedX/SSAPS.

Supported by Network Resources Management and Trust Evaluation Key Laboratory of Hunan Province, Central South University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilal, W., Andrew Gadsden, S., Yawney, J.: A review of anomaly detection techniques and recent advances, Financial fraud (2022)

    Google Scholar 

  2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD-a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  3. Tsai, C.-C., Wu, T.-H., Lai, S.-H.: Multi-scale patch-based representation learning for image anomaly detection and segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3992–4000 (2022)

    Google Scholar 

  4. Yi, J., Yoon, S.: Patch SVDD: patch-level SVDD for anomaly detection and segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  5. Ruff, L.: Deep one-class classification. In International conference on machine learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  6. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  7. Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (NSA). arXiv preprint arXiv:2109.15222 (2021)

  8. Li, C.-L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  9. Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid correspondences. arXiv preprint arXiv:2005.02357 (2020)

  10. Zavrtanik, V., Kristan, M., Skočaj, D.: DRAEM-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)

    Google Scholar 

  11. Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer network for image anomaly detection and localization. In: 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pp. 01–06. IEEE (2021)

    Google Scholar 

  12. Zheng, Y., Wang, X., Deng, R., Bao, T., Zhao, R., Wu, L.: Focus your distribution: coarse-to-fine non-contrastive learning for anomaly detection and localization. arXiv preprint arXiv:2110.04538 (2021)

  13. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2022)

    Google Scholar 

  14. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35

    Chapter  Google Scholar 

  15. Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid correspondences. arxiv 2020. arXiv preprint arXiv:2005.02357

  16. Rippel, O., Mertens, P., Merhof, D.: Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6726–6733. IEEE (2021)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  18. Mei, S., Yang, H., Yin, Z.: An unsupervised-learning-based approach for automated defect inspection on textured surfaces. IEEE Trans. Instrum. Meas. 67(6), 1266–1277 (2018)

    Article  Google Scholar 

  19. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 (2018)

  20. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  21. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)

    Google Scholar 

  22. Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., Pan, S.: Omni-frequency channel-selection representations for unsupervised anomaly detection. arXiv preprint arXiv:2203.00259 (2022)

  23. Pirnay, J., Chai, K.: Inpainting transformer for anomaly detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) International Conference on Image Analysis and Processing, vol. 13232, pp. 394–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_33

  24. Yang, M., Wu, P., Liu, J., Feng, H.: MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities. arXiv preprint arXiv:2205.00908 (2022)

  25. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  26. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  27. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  28. Song, J., Kong, K., Park, Y.-I., Kim, S.-G., Kang, S.-J.: AnoSeg: anomaly segmentation network using self-supervised learning. arXiv preprint arXiv:2110.03396 (2021)

  29. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  30. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Google Scholar 

  31. Kim, J.-H., Kim, D.-H., Yi, S., Lee, T.: Semi-orthogonal embedding for efficient unsupervised anomaly segmentation. arXiv preprint arXiv:2105.14737 (2021)

  32. Sohn, K., Li, C.-L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)

  33. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

Download references

Acknowledgements

The paper is supported by the Open Fund of Science and Technology on Parallel and Distributed Processing Laboratory under Grant WDZC20215250116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujie Hua .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 48289 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, J., Yang, Y., Hua, L., Ou, Y. (2023). Self-supervised Augmented Patches Segmentation for Anomaly Detection. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics