Skip to main content

Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia

  • Chapter
  • First Online:
Basic and Translational Applications of the Network Theory for Dystonia

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 31))

Abstract

Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863–73. https://doi.org/10.1002/mds.25475.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wagle Shukla A, Vaillancourt DE. Treatment and physiology in Parkinson's disease and dystonia: using transcranial magnetic stimulation to uncover the mechanisms of action. Curr Neurol Neurosci Rep. 2014;14(6):449. https://doi.org/10.1007/s11910-014-0449-5.

    Article  PubMed  Google Scholar 

  3. Wagle Shukla A, Okun MS. State of the art for deep brain stimulation therapy in movement disorders: a clinical and technological perspective. IEEE Rev Biomed Eng. 2016;9:219–33. https://doi.org/10.1109/RBME.2016.2588399.

    Article  PubMed  Google Scholar 

  4. Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. Handb Clin Neurol. 2013;116:167–87. https://doi.org/10.1016/B978-0-444-53497-2.00014-0.

    Article  PubMed  Google Scholar 

  5. Cantello R, Gianelli M, Civardi C, Mutani R. Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology. 1992;42(10):1951–9. https://doi.org/10.1212/wnl.42.10.1951.

    Article  CAS  PubMed  Google Scholar 

  6. Wagle Shukla A, Shuster JJ, Chung JW, et al. Repetitive Transcranial Magnetic Stimulation (rTMS) therapy in Parkinson disease: a meta-analysis. PM R. 2016;8(4):356–66. https://doi.org/10.1016/j.pmrj.2015.08.009.

    Article  PubMed  Google Scholar 

  7. Koch G, Porcacchia P, Ponzo V, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014;7(4):564–72. https://doi.org/10.1016/j.brs.2014.05.002.

    Article  PubMed  Google Scholar 

  8. Lozeron P, Poujois A, Richard A, et al. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia. Front Neural Circuits. 2016;10:90. https://doi.org/10.3389/fncir.2016.00090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCambridge AB, Bradnam LV. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci. 2021;53(4):1300–23. https://doi.org/10.1111/ejn.14987.

    Article  CAS  PubMed  Google Scholar 

  10. Obeso I, Cerasa A, Quattrone A. The effectiveness of transcranial brain stimulation in improving clinical signs of hyperkinetic movement disorders. Front Neurosci. 2015;9:486. https://doi.org/10.3389/fnins.2015.00486.

    Article  PubMed  Google Scholar 

  11. Quartarone A, Rizzo V, Terranova C, et al. Therapeutic use of non-invasive brain stimulation in dystonia. Front Neurosci. 2017;11:423. https://doi.org/10.3389/fnins.2017.00423.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry. 1995;59(5):493–8. https://doi.org/10.1136/jnnp.59.5.493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen R, Wassermann EM, Caños M, Hallett M. Impaired inhibition in writer's cramp during voluntary muscle activation. Neurology. 1997;49(4):1054–9. https://doi.org/10.1212/wnl.49.4.1054.

    Article  CAS  PubMed  Google Scholar 

  14. Filipović SR, Ljubisavljević M, Svetel M, Milanović S, Kacar A, Kostić VS. Impairment of cortical inhibition in writer's cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation. Neurosci Lett. 1997;222(3):167–70. https://doi.org/10.1016/s0304-3940(97)13370-5.

    Article  PubMed  Google Scholar 

  15. Mavroudakis N, Caroyer JM, Brunko E, Zegers de Beyl D. Abnormal motor evoked responses to transcranial magnetic stimulation in focal dystonia. Neurology. 1995;45(9):1671–7. https://doi.org/10.1212/wnl.45.9.1671.

    Article  CAS  PubMed  Google Scholar 

  16. Ikoma K, Samii A, Mercuri B, Wassermann EM, Hallett M. Abnormal cortical motor excitability in dystonia. Neurology. 1996;46(5):1371–6. https://doi.org/10.1212/wnl.46.5.1371.

    Article  CAS  PubMed  Google Scholar 

  17. Siebner HR, Auer C, Conrad B. Abnormal increase in the corticomotor output to the affected hand during repetitive transcranial magnetic stimulation of the primary motor cortex in patients with writer's cramp. Neurosci Lett. 1999;262(2):133–6. https://doi.org/10.1016/s0304-3940(99)00056-7.

    Article  CAS  PubMed  Google Scholar 

  18. Rona S, Berardelli A, Vacca L, Inghilleri M, Manfredi M. Alterations of motor cortical inhibition in patients with dystonia. Mov Disord. 1998;13(1):118–24. https://doi.org/10.1002/mds.870130123.

    Article  CAS  PubMed  Google Scholar 

  19. Gilio F, Currà A, Inghilleri M, et al. Abnormalities of motor cortex excitability preceding movement in patients with dystonia. Brain. 2003;126(Pt 8):1745–54. https://doi.org/10.1093/brain/awg188.

    Article  CAS  PubMed  Google Scholar 

  20. Murase N, Rothwell JC, Kaji R, et al. Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain. 2005;128(Pt 1):104–15. https://doi.org/10.1093/brain/awh315.

    Article  PubMed  Google Scholar 

  21. Borich M, Arora S, Kimberley TJ. Lasting effects of repeated rTMS application in focal hand dystonia. Restor Neurol Neurosci. 2009;27(1):55–65. https://doi.org/10.3233/RNN-2009-0461.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siebner HR, Tormos JM, Ceballos-Baumann AO, et al. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology. 1999;52(3):529–37. https://doi.org/10.1212/wnl.52.3.529.

    Article  CAS  PubMed  Google Scholar 

  23. Hallett M. Neurophysiology of dystonia: the role of inhibition. Neurobiol Dis. 2011;42(2):177–84. https://doi.org/10.1016/j.nbd.2010.08.025.

    Article  PubMed  Google Scholar 

  24. Kassavetis P, Sadnicka A, Saifee TA, et al. Reappraising the role of motor surround inhibition in dystonia. J Neurol Sci. 2018;07(390):178–83. https://doi.org/10.1016/j.jns.2018.04.015.

    Article  Google Scholar 

  25. Sohn YH, Hallett M. Disturbed surround inhibition in focal hand dystonia. Ann Neurol. 2004;56(4):595–9. https://doi.org/10.1002/ana.20270.

    Article  PubMed  Google Scholar 

  26. Beck S, Richardson SP, Shamim EA, Dang N, Schubert M, Hallett M. Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci. 2008;28(41):10363–9. https://doi.org/10.1523/JNEUROSCI.3564-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veugen LC, Hoffland BS, Stegeman DF, van de Warrenburg BP. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients. Exp Brain Res. 2013;225(1):85–92. https://doi.org/10.1007/s00221-012-3350-y.

    Article  PubMed  Google Scholar 

  28. Pirio Richardson S, Beck S, Bliem B, Hallett M. Abnormal dorsal premotor-motor inhibition in writer’s cramp. Mov Disord. 2014;29(6):797–803. https://doi.org/10.1002/mds.25878.

    Article  PubMed  Google Scholar 

  29. DeSimone JC, Archer DB, Vaillancourt DE, Wagle Shukla A. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain. 06 2019;142(6):1644–1659. 10.1093/brain/awz085.

    Google Scholar 

  30. Corp DT, Joutsa J, Darby RR, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142(6):1660–74. https://doi.org/10.1093/brain/awz112.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bologna M, Paparella G, Fabbrini A, et al. Effects of cerebellar theta-burst stimulation on arm and neck movement kinematics in patients with focal dystonia. Clin Neurophysiol. 2016;127(11):3472–9. https://doi.org/10.1016/j.clinph.2016.09.008.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Panyakaew P, Cho HJ, Lee SW, Wu T, Hallett M. The Pathophysiology of Dystonic Tremors and Comparison With Essential Tremor. J Neurosci. 2020;40(48):9317–26. https://doi.org/10.1523/JNEUROSCI.1181-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quartarone A, Bagnato S, Rizzo V, et al. Abnormal associative plasticity of the human motor cortex in writer's cramp. Brain. 2003;126(Pt 12):2586–96. https://doi.org/10.1093/brain/awg273.

    Article  PubMed  Google Scholar 

  34. Quartarone A, Rizzo V, Terranova C, et al. Abnormal sensorimotor plasticity in organic but not in psychogenic dystonia. Brain. 2009;132(Pt 10):2871–7. https://doi.org/10.1093/brain/awp213.

    Article  CAS  PubMed  Google Scholar 

  35. Weise D, Schramm A, Stefan K, et al. The two sides of associative plasticity in writer’s cramp. Brain. 2006;129(Pt 10):2709–21. https://doi.org/10.1093/brain/awl221.

    Article  PubMed  Google Scholar 

  36. Tamura Y, Ueki Y, Lin P, et al. Disordered plasticity in the primary somatosensory cortex in focal hand dystonia. Brain. 2009;132(Pt 3):749–55. https://doi.org/10.1093/brain/awn348.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meunier S, Russmann H, Shamim E, Lamy JC, Hallett M. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci. 2012;35(6):975–86. https://doi.org/10.1111/j.1460-9568.2012.08034.x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 2006;29(4):192–9. https://doi.org/10.1016/j.tins.2006.02.007.

    Article  CAS  PubMed  Google Scholar 

  39. Quartarone A, Morgante F, Sant'angelo A, et al. Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J Neurol Neurosurg Psychiatry. 2008;79(9):985–90. https://doi.org/10.1136/jnnp.2007.121632.

    Article  CAS  PubMed  Google Scholar 

  40. Bäumer T, Demiralay C, Hidding U, et al. Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer's cramp. Mov Disord. 2007;22(1):81–90. https://doi.org/10.1002/mds.21219.

    Article  PubMed  Google Scholar 

  41. Brighina F, Romano M, Giglia G, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2009;192(4):651–6. https://doi.org/10.1007/s00221-008-1572-9.

    Article  CAS  PubMed  Google Scholar 

  42. Hubsch C, Roze E, Popa T, et al. Defective cerebellar control of cortical plasticity in writer's cramp. Brain. 2013;136(Pt 7):2050–62. https://doi.org/10.1093/brain/awt147.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Porcacchia P, Álvarez de Toledo P, Rodríguez-Baena A, et al. Abnormal cerebellar connectivity and plasticity in isolated cervical dystonia. PLoS One. 2019;14(1):e0211367. https://doi.org/10.1371/journal.pone.0211367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang JS, Terranova C, Hilker R, Quartarone A, Ziemann U. Deficient homeostatic regulation of practice-dependent plasticity in writer's cramp. Cereb Cortex. 2011;21(5):1203–12. https://doi.org/10.1093/cercor/bhq204.

    Article  PubMed  Google Scholar 

  45. Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. A reflection on plasticity research in writing dystonia. Mov Disord. 2014;29(8):980–7. https://doi.org/10.1002/mds.25908.

    Article  PubMed  Google Scholar 

  46. Sadnicka A, Hamada M, Bhatia KP, Rothwell JC, Edwards MJ. Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord. 2014;29(10):1304–7. https://doi.org/10.1002/mds.25881.

    Article  PubMed  Google Scholar 

  47. Espay AJ, Morgante F, Purzner J, Gunraj CA, Lang AE, Chen R. Cortical and spinal abnormalities in psychogenic dystonia. Ann Neurol. 2006;59(5):825–34. https://doi.org/10.1002/ana.20837.

    Article  PubMed  Google Scholar 

  48. Avanzino L, Martino D, van de Warrenburg BP, et al. Cortical excitability is abnormal in patients with the “fixed dystonia” syndrome. Mov Disord. 2008;23(5):646–52. https://doi.org/10.1002/mds.21801.

    Article  PubMed  Google Scholar 

  49. Kojovic M, Pareés I, Kassavetis P, et al. Secondary and primary dystonia: pathophysiological differences. Brain. 2013;136(Pt 7):2038–49. https://doi.org/10.1093/brain/awt150.

    Article  PubMed  Google Scholar 

  50. Hu W, Rundle-Gonzalez V, Kulkarni SJ, et al. A randomized study of botulinum toxin versus botulinum toxin plus physical therapy for treatment of cervical dystonia. Parkinsonism Relat Disord. 2019;06(63):195–8. https://doi.org/10.1016/j.parkreldis.2019.02.035.

    Article  Google Scholar 

  51. Wagle Shukla A, Ostrem JL, Vaillancourt DE, Chen R, Foote KD, Okun MS. Physiological effects of subthalamic nucleus deep brain stimulation surgery in cervical dystonia. J Neurol Neurosurg Psychiatry. 2018;89(12):1296–300. https://doi.org/10.1136/jnnp-2017-317098.

    Article  PubMed  Google Scholar 

  52. Tyvaert L, Houdayer E, Devanne H, Monaca C, Cassim F, Derambure P. The effect of repetitive transcranial magnetic stimulation on dystonia: a clinical and pathophysiological approach. Neurophysiol Clin. 2006;36(3):135–43. https://doi.org/10.1016/j.neucli.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  53. Murase N, Shimadu H, Urushihara R, Kaji R. Abnormal sensorimotor integration in hand dystonia. Suppl Clin Neurophysiol. 2006;59:283–7. https://doi.org/10.1016/s1567-424x(09)70041-8.

    Article  PubMed  Google Scholar 

  54. Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia Dec 2015;79(Pt B):288–300. https://doi.org/10.1016/j.neuropsychologia.2015.07.008.

  55. Rosenkranz K, Williamon A, Butler K, Cordivari C, Lees AJ, Rothwell JC. Pathophysiological differences between musician's dystonia and writer's cramp. Brain. 2005;128(Pt 4):918–31. https://doi.org/10.1093/brain/awh402.

    Article  PubMed  Google Scholar 

  56. Pirio Richardson S, Bliem B, Voller B, Dang N, Hallett M. Long-latency afferent inhibition during phasic finger movement in focal hand dystonia. Exp Brain Res. 2009;193(2):173–9. https://doi.org/10.1007/s00221-008-1605-4.

    Article  PubMed  Google Scholar 

  57. Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain. 2001;124(Pt 3):537–45. https://doi.org/10.1093/brain/124.3.537.

    Article  CAS  PubMed  Google Scholar 

  58. Simonetta-Moreau M, Lourenço G, Sangla S, Mazieres L, Vidailhet M, Meunier S. Lack of inhibitory interaction between somatosensory afferent inputs and intracortical inhibitory interneurons in focal hand dystonia. Mov Disord. 2006;21(6):824–34. https://doi.org/10.1002/mds.20821.

    Article  PubMed  Google Scholar 

  59. Zittel S, Helmich RC, Demiralay C, Münchau A, Bäumer T. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia. J Neurol. 2015;262(8):1883–9. https://doi.org/10.1007/s00415-015-7789-1.

    Article  CAS  PubMed  Google Scholar 

  60. de Vries PM, de Jong BM, Bohning DE, Hinson VK, George MS, Leenders KL. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI. Clin Neurol Neurosurg. 2012;114(7):914–21. https://doi.org/10.1016/j.clineuro.2012.02.006.

    Article  PubMed  Google Scholar 

  61. Siebner HR, Filipovic SR, Rowe JB, et al. Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain. 2003;126(Pt 12):2710–25. https://doi.org/10.1093/brain/awg282.

    Article  PubMed  Google Scholar 

  62. Havrankova P, Jech R, Walker ND, et al. Repetitive TMS of the somatosensory cortex improves writer's cramp and enhances cortical activity. Neuro Endocrinol Lett. 2010;31(1):73–86.

    PubMed  Google Scholar 

  63. Bharath RD, Biswal BB, Bhaskar MV, et al. Repetitive transcranial magnetic stimulation induced modulations of resting state motor connectivity in writer's cramp. Eur J Neurol. 2015;22(5):796–e53. https://doi.org/10.1111/ene.12653.

    Article  CAS  PubMed  Google Scholar 

  64. Bharath RD, Panda R, Reddam VR, et al. A single session of rTMS enhances small-worldness in writer’s cramp: evidence from simultaneous EEG-fMRI multi-modal brain graph. Front Hum Neurosci. 2017;11:443. https://doi.org/10.3389/fnhum.2017.00443.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: implications for diagnostic use in movement disorders. Mov Disord. 2019;34(7):936–49. https://doi.org/10.1002/mds.27736.

    Article  PubMed  Google Scholar 

  66. Stinear CM, Byblow WD. Impaired modulation of corticospinal excitability following subthreshold rTMS in focal hand dystonia. Hum Mov Sci. 2004;23(3–4):527–38. https://doi.org/10.1016/j.humov.2004.08.022.

    Article  PubMed  Google Scholar 

  67. Betti S, Spoto A, Castiello U, Sartori L. Testing rTMS-induced neuroplasticity: a single case study of focal hand dystonia. Neural Plast. 2018;2018:6464896. https://doi.org/10.1155/2018/6464896.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Naro A, Billeri L, Portaro S, Bramanti P, Calabrò RS. Lasting effects of low-frequency repetitive transcranial magnetic stimulation in writer’s cramp: a case report. Front Hum Neurosci. 2019;13:314. https://doi.org/10.3389/fnhum.2019.00314.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sharma K, Cucca A, Lee A, Agarwal S, Frucht SJ, Biagioni MC. Transcranial magnetic stimulation therapy for focal leg dystonia: a case report. J Clin Mov Disord. 2019;6:1. https://doi.org/10.1186/s40734-019-0076-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kimberley TJ, Borich MR, Arora S, Siebner HR. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects. Restor Neurol Neurosci. 2013;31(5):533–42. https://doi.org/10.3233/RNN-120259.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kimberley TJ, Schmidt RL, Chen M, Dykstra DD, Buetefisch CM. Mixed effectiveness of rTMS and retraining in the treatment of focal hand dystonia. Front Hum Neurosci. 2015;9:385. https://doi.org/10.3389/fnhum.2015.00385.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Allam N, Brasil-Neto JP, Brandão P, Weiler F, Barros Filho J, Tomaz C. Relief of primary cervical dystonia symptoms by low frequency transcranial magnetic stimulation of the premotor cortex: case report. Arq Neuropsiquiatr. 2007;65(3A):697–9. https://doi.org/10.1590/s0004-282x2007000400030.

    Article  PubMed  Google Scholar 

  73. Kimberley TJ, Borich MR, Schmidt RL, Carey JR, Gillick B. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation. Arch Phys Med Rehabil. 2015;96(4 Suppl):S122–8. https://doi.org/10.1016/j.apmr.2014.07.426.

    Article  PubMed  Google Scholar 

  74. Schneider SA, Pleger B, Draganski B, et al. Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia—an fMRI-TMS study. Mov Disord. 2010;25(1):76–83. https://doi.org/10.1002/mds.22825.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huang YZ, Rothwell JC, Lu CS, Wang J, Chen RS. Restoration of motor inhibition through an abnormal premotor-motor connection in dystonia. Mov Disord. 2010;25(6):696–703. https://doi.org/10.1002/mds.22814.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang YZ, Lu CS, Rothwell JC, et al. Modulation of the disturbed motor network in dystonia by multisession suppression of premotor cortex. PLoS One. 2012;7(10):e47574. https://doi.org/10.1371/journal.pone.0047574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pirio Richardson S, Tinaz S, Chen R. Repetitive transcranial magnetic stimulation in cervical dystonia: effect of site and repetition in a randomized pilot trial. PLoS One. 2015;10(4):e0124937. https://doi.org/10.1371/journal.pone.0124937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin HW, Hallett M. Low-frequency transcranial magnetic stimulation of the left dorsal premotor cortex in patients with cervical dystonia. Parkinsonism Relat Disord. 2020;07(76):13–5. https://doi.org/10.1016/j.parkreldis.2020.05.027.

    Article  Google Scholar 

  79. Kranz G, Shamim EA, Lin PT, Kranz GS, Voller B, Hallett M. Blepharospasm and the modulation of cortical excitability in primary and secondary motor areas. Neurology. 2009;73(23):2031–6. https://doi.org/10.1212/WNL.0b013e3181c5b42d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kranz G, Shamim EA, Lin PT, Kranz GS, Hallett M. Transcranial magnetic brain stimulation modulates blepharospasm: a randomized controlled study. Neurology. 2010;75(16):1465–71. https://doi.org/10.1212/WNL.0b013e3181f8814d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagle Shukla A, Hu W, Legacy J, Deeb W, Hallett M. Combined effects of rTMS and botulinum toxin therapy in benign essential blepharospasm. Brain Stimul. 2018;11(3):645–7. https://doi.org/10.1016/j.brs.2018.02.004.

    Article  PubMed  Google Scholar 

  82. Lefaucheur JP, Fénelon G, Ménard-Lefaucheur I, Wendling S, Nguyen JP. Low-frequency repetitive TMS of premotor cortex can reduce painful axial spasms in generalized secondary dystonia: a pilot study of three patients. Neurophysiol Clin. 2004;34(3–4):141–5. https://doi.org/10.1016/j.neucli.2004.07.003.

    Article  PubMed  Google Scholar 

  83. Mylius V, Gerstner A, Peters M, et al. Low-frequency rTMS of the premotor cortex reduces complex movement patterns in a patient with pantothenate kinase-associated neurodegenerative disease (PKAN). Neurophysiol Clin. 2009;39(1):27–30. https://doi.org/10.1016/j.neucli.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Tyler’s Hope for a Dystonia Cure Foundation.

Author Contributions

JF contributed to the writing of the first draft, conceptualization of the topic, and major revisions. ARZ was responsible for major revisions. AWS was responsible for conceptualization of the topic and major revisions. All authors agree to be accountable for the content of the work.

Financial Disclosure

AWS reports grants from the NIH and has received grant support from Benign Essential Blepharospasm Research Foundation, Dystonia Coalition, Dystonia Medical Research Foundation, National Organization for Rare Disorders, and grant support from NIH (KL2 and K23 NS092957-01A1). JF reports grants from the Dystonia Medical Research Foundation.

Funding

No funding was acquired for the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Wagle Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frey, J., Ramirez-Zamora, A., Wagle Shukla, A. (2023). Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. In: Shaikh, A., Sadnicka, A. (eds) Basic and Translational Applications of the Network Theory for Dystonia. Advances in Neurobiology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-26220-3_7

Download citation

Publish with us

Policies and ethics