Skip to main content

The Direct Approach for Plates Considering Hygrothermal Loading and Residual Kinetics

  • Chapter
  • First Online:
Sixty Shades of Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 170))

  • 443 Accesses

Abstract

The direct approach for plates is based on Cosserat continuum theory, or rather on the Cosserat surface. The same principles as used in classical continuum mechanics are applied whereby a restriction to two-dimensional body manifolds is imposed. At the same time independent rotational degrees of freedom are introduced. Pavel Andreevich Zhilin then proposed a reduced treatment that is widely used in engineering, especially in composite mechanics. However, the approach still lacks important extensions to include significant quantities influencing the mechanical behaviour. These quantities result from moisture exposure, temperature changes and initial tense in the material. We here delineate extensions based on physical justifications while discussing three-dimensional causation and two-dimensional impact. A resulting set of equations for the combined loading is derived and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Javanbakht Z, Aßmus M,Naumenko K, Öchsner A, AltenbachH (2019) On thermal strains and residual stresses in the linear theory of anti-sandwiches,ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 99(8):e201900062. DOI https://doi.org/10.1002/zamm.201900062

  2. Zhilin PA (1976) Mechanics of deformable directed surfaces, International Journal of Solids and Structures 12(9):635–648. DOI https://doi.org/10.1016/0020-7683(76)90010-X

  3. Cosserat F, Cosserat E (1909) Théorie des corps déformables, A. Hermann et fils, Paris. URL http://jhir.library.jhu.edu/handle/1774.2/34209

  4. Ericksen JL, Truesdell C (1957) Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis 1(1):295–323. DOI https://doi.org/10.1007/BF00298012

  5. Kirchhoff GR (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, Crelles Journal für die reine und angewandte Mathematik 40:51–88. DOI https://doi.org/10.1515/crll.1850.40.51

  6. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics 12(2):A69–A77. DOI https://doi.org/10.1115/1.4009435

  7. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, Journal of Applied Mechanics 18(1):31–38. DOI https://doi.org/10.1115/1.4010217

  8. Aßmus M, Naumenko K, Altenbach H (2019) Subclasses of mechanical problems arising from the direct approach for homogeneous plates, In: Altenbach H, Chróścielewski J, Eremeyev V,Wiśniewski K (Eds) Recent Developments in the Theory of Shells, Advanced Structured Materials, vol 110, Springer, Singapore, pp 1–21. DOI https://doi.org/10.1007/978-3-030-17747-8_4

  9. Šilhavý M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin ・ Heidelberg

    Google Scholar 

  10. Eremeyev VA, Cloud MJ, Lebedev LP (2018) Applications of Tensor Analysis in Continuum Mechanics. World Scientific, DOI https://doi.org/10.1142/10959

  11. Germain S (1821) Recherches sur la théorie des surfaces élastiques, Veuve Courtier, Paris. URL www.cambridge.org/9781108050371

  12. Lagrange JL (1828) Annales de Chimie 39:149,207

    Google Scholar 

  13. NavierM(1823) Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques, Bulletin de la Société Philomathique de Paris pp 177–181

    Google Scholar 

  14. Poisson SD (1829) Sur l’équilibre et mouvement des corps élastiques, Mémoires de l’Académie des Sciences VIII

    Google Scholar 

  15. Altenbach H, Eremeyev V (2017) Thin-walled structural elements: Classification, classical and advanced theories, new applications, In: Altenbach H, Eremeyev V (Eds) Shell-like Structures: Advanced Theories and Applications, CISM International Centre for Mechanical Sciences, vol 572, Springer International Publishing, Cham, pp 1–62. DOI https://doi.org/10.1007/978-3-319-42277-0_1

  16. Aßmus M, Eisenträger J, Altenbach H (2017) Projector representation of isotropic linear elastic material laws for directed surfaces, Zeitschrift für Angewandte Mathematik und Mechanik 97:1–10. DOI https://doi.org/10.1002/zamm.201700122

  17. Altenbach H (2000) An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, International Journal of Solids and Structures 37(25):3503–3520. DOI https://doi.org/10.1016/S0020-7683(99)00057-8

  18. Neumann FE (1885) Vorlesungen über mathematische Physik: Vorlesungen über die Theorie der Elasticität der festen Körper, Vol 4, BG Teubner, Leipzig

    Google Scholar 

  19. Duhamel JMC (1837) Second mémoire sur les phénomènes thermomécaniques, Journal de l’École polytechnique 15(25):1–57

    Google Scholar 

  20. Duhamel JMC (1838) Mémoire sur le calcul des actions moléculaires développées par les changements de température dans les corps solides, Mémoires présentés par Divers Savants à l’Academie Royale des sciences de l’Institut de France 5:440–498

    Google Scholar 

  21. Korsunsky AM (2008) Eigenstrain analysis of residual strains and stresses, The Journal of Strain Analysis for Engineering Design 44(1):29–43. DOI https://doi.org/10.1243/03093247JSA423

  22. Korsunsky A (2017) A Teaching Essay on Residual Stresses and Eigenstrains, Butterworth-Heinemann, Amsterdam

    Google Scholar 

  23. Lu J, for ExperimentalMechanics (US) S (1996) Handbook of Measurement of Residual Stresses, Handbook of Measurement of Residual Stresses, Fairmont Press. URL https://books.google.de/books?id=h4h9QgAACAAJ

  24. Schajer GS (2013) Practical Residual Stress Measurement Methods, John Wiley & Sons, Ltd, Chichester. DOI https://doi.org/10.1002/9781118402832

  25. Aßmus M (2019) Structural Mechanics of Anti-Sandwiches. An Introduction. SpringerBriefs in Continuum Mechanics, Springer, Cham, DOI https://doi.org/10.1007/978-3-030-04354-4

  26. Tonti E (2013) The Mathematical Structure of Classical and Relativistic Physics, Birkhäuser

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Aßmus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aßmus, M., Javanbakht, Z., Altenbach, H. (2023). The Direct Approach for Plates Considering Hygrothermal Loading and Residual Kinetics. In: Altenbach, H., Berezovski, A., dell'Isola, F., Porubov, A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-031-26186-2_3

Download citation

Publish with us

Policies and ethics