Skip to main content

Classical and Non-Classical Models of Changes in the Young Modulus of Geomaterials Under Alternating Loads

  • Chapter
  • First Online:
Sixty Shades of Generalized Continua

Abstract

The paper proposes the classical and the non-classical models of changes in the Young’s modulus of a geomaterial under the effect of an alternating load. The classical model is based on the Newton’s equation and the Jaeger’s idealized “mass-on-spring” model. The non-classical model is based on the gradient theory, which takes into account the internal heterogeneous structure (scale) of a geomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tutuncu AN, Podio AL, Gregory AR, Sharma MM (1998) Nonlinear viscoelastic behavior of sedimentary rocks, Part I: Effect of frequency and strain amplitude, Geophysics 63:184–194. https://doi.org/10.1190/1.1444311

  2. Bauer A, Bhuiyan MH, Fjaer E, Holt RM, Lozovyi S, Pohl M, Szewczyk D. (2016) Frequency-dependent wave velocities in sediments and sedimentary rocks: Laboratory measurements and evidences, The Leading Edge 35:474–560. https://doi.org/10.1190/tle35060490.1

  3. Kotsanis D, Nomikos P, Rozos D (2021) Comparison of static and dynamic Young’s modulus of prasinites, Mater. Proc. 2021(5):54. https://doi.org/10.3390/materproc2021005054

  4. Borgomano JVM, Gallagher A, Sun C, Fortin J (2020) An apparatus to measure elastic dispersion and attenuation using hydrostatic- and axial-stress oscillations under undrained conditions, Review of Scientific Instruments 91(3):034502. https://doi.org/10.1063/1.5136329

  5. Waqas U, Ahmed MF (2020) Prediction modeling for the estimation of dynamic elastic Young’s modulus of thermally treated sedimentary rocks using linear–nonlinear regression analysis, regularization, and ANFIS, Rock Mech. Rock Eng. 53:5411–5428. https://doi.org/10.1007/s00603-020-02219-8

  6. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 47:1411–1478. https://doi.org/10.1007/s00603-013-0463-y

  7. Jaeger JC, Cook NGW, Zimmerman RW(2007) Laboratory testing of rocks. In: Fundamentals of Rock Mechanics, 4th ed., Blackwell Publishing, Malden, MA, USA, pp 145–167.

    Google Scholar 

  8. Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua, Acta Mechanica 160(1–2):71–111, https://doi.org/10.1007/s00707-002-0975-0

  9. Smolin IY (2005) On the application of the Cosserat model to the description of plastic deformation at the mesoscale, Fizicheskaya Mezomekhanika (3):49–62.

    Google Scholar 

  10. Bazant ZP, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics 128(11):1119–1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)

  11. Lurie SA, Kalamkarov AL, Solyaev YO, Volkov AV (2021) Dilatation gradient elasticity theory, European Journal of Mechanics, A/Solids 88:104258. https://doi.org/10.1016/j.euromechsol.2021.104258

  12. Placidi L, Misra A, Barchiesi E (2019) Simulation results for damage with evolving microstructure and growing strain gradient moduli, Continuum Mechanics and Thermodynamics 31(4):1143–1163. https://doi.org/10.1007/s00161-018-0693-z

  13. Zhang G, Zheng C, Mi C, Gao X-L (2021) A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory, Mechanics of Advanced Materials and Structures 29(17):2521–2530. https://doi.org/10.1080/15376494.2020.1870054

  14. Nazarenko L, Glüge R, Altenbach H (2021) Positive definiteness in coupled strain gradient elasticity, Continuum Mechanics and Thermodynamics 33(3):713–725. https://doi.org/10.1007/s00161-020-00949-2

  15. Sidhardh S, Ray MC (2018) Element-free Galerkin model of nano-beams considering strain gradient elasticity, Acta Mechanica 229(7):2765–2786. https://doi.org/10.1007/s00707-018-2139-x

  16. Mindlin RD (1964) Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis 16(1):51–78. https://doi.org/10.1007/BF00248490

  17. Aifantis EC (2012) A note on gradient elasticity and nonsingular crack fields, Journal of the Mechanical Behavior of Materials 20(4–5):103–105. https://doi.org/10.1515/jmbm-2012-0002

  18. Parisis K, Konstantopoulos I, Aifantis EC (2018) Nonsingular solutions of GradEla models for dislocations: An extension to fractional GradEla, Journal of Micromechanics and Molecular Physics 3(3–4):1840013. https://doi.org/10.1142/S2424913018400131

  19. Guzev MA Non-classical solutions of a continuum model for rock descriptions, Journal of Rock Mechanics and Geotechnical Engineering 6(3):180–185. https://doi.org/10.1016/j.jrmge.2014.03.001

  20. Qi CZ, Li KR, Bai JP, Chanyshev AI, Liu P. (2017) Strain gradient model of zonal disintegration of rock mass near deep-level tunnels, Journal of Mining Science 53:21–33. https://doi.org/10.1134/S1062739117011808

  21. Lavrikov SV, Revuzhenko AF (2019) Mathematical modeling of deformation of self-stress rock mass surrounding a tunnel, Im: Wu W (ed) Desiderata Geotechnica, Springer Series in Geomechanics and Geoengineering pp 79–85. https://doi.org/10.1007/978-3-030-14987-1_9

  22. Guzev M, Kozhevnikov, E, Turbakov M, Riabokon E, Poplygin V (2020) Experimental studies of the influence of dynamic loading on the elastic properties of sandstone, Energies 2020(13):6195. https://doi.org/10.3390/en13236195

  23. Goldstein H, Poole Jr C, Safko J (2002) Classical Mechanics, 3rd ed, Addison Wesley, San Francisco.

    Google Scholar 

  24. Guzev M, Riabokon E, Turbakov M, Kozhevnikov E, Poplygin V (2020) Modelling of the dynamic Young’s modulus of a sedimentary rock subjected to nonstationary loading, Energies 2020(13):6461. https://doi.org/10.3390/en13236461

  25. Lomakin EV, Lurie SA, Rabinskiy LN, Solyaev YO (2019) On the refined stress analysis in the applied elasticity problems accounting of gradient effects, Doklady Physics 489(6):585–591. https://doi.org/10.1134/S1028335819120103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Guzev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guzev, M.A., Riabokon, E.P., Turbakov, M.S., Poplygin, V.V., Kozhevnikov, E.V., Gladkikh, E.A. (2023). Classical and Non-Classical Models of Changes in the Young Modulus of Geomaterials Under Alternating Loads. In: Altenbach, H., Berezovski, A., dell'Isola, F., Porubov, A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-031-26186-2_21

Download citation

Publish with us

Policies and ethics