Skip to main content

New Anti-tuberculous Drugs: Bedaquiline, Delamanid, and Pretomanid

  • Chapter
  • First Online:
New Antimicrobials: For the Present and the Future

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

Abstract

Development of new drugs to treat drug-resistant tuberculosis is most important in the fight against the global spread of this contagious and potentially deadly infectious disease. Prior to 2010, no new class of drugs was introduced to treat tuberculosis (TB) for over 40 years. Although rifapentine (a long-acting rifamycin) was approved by the United States (US) Food and Drug Administration (FDA) in 1998 for the treatment of pulmonary TB, it was rarely used and is not effective for multidrug-resistant (MDR) TB. In the past decade, however, three new drugs (bedaquiline, delamanid, and pretomanid) have been introduced on the global scene to combat MDR- and extensive drug-resistant (XDR) TB. Their chemistry, pharmacology/pharmacokinetics, in vitro activity, and clinical efficacy and side effects are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis report 2019. Geneva: World health Organization; 2019. https://www.who.int/tb/publications/global=-report/en

    Google Scholar 

  2. Ramchandani SR, Gupta A, Bensen CA, et al. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med. 2019;380:1001–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dorman SE, Nahid P, Kurbata EV, et al. Four—month rifapentine regimens with or without moxifloxcacin for tuberculosis. N Engl J Med. 2021;384:1705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khoshnood S, Goudarzi M, Taki E, et al. Bedaquiline: current status and future perspectives. J Global Antimicrob Resistance. 2021;25:48–59.

    Article  CAS  Google Scholar 

  5. Matteelli A, Carvalho AC, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anti-tuberculous drugs. Future Microbiol. 2010;5:849–58.

    Article  CAS  PubMed  Google Scholar 

  6. Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterial tuberculosis. Science. 2005;307:223–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chahine EB, Karaoui LR, Mansour H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Annn Pharmacother. 2014;48:107–15.

    Article  Google Scholar 

  8. Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One. 2014;9:e102135.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ghajavand H, Kamakoli MK, Khanipour S, et al. High prevalence of bedaquiline resistance in treatment-naïve tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother. 2019;63:e02530–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen TVA, Anthony RM, Banuls AL, Nguyen TVA, Vu DH, Alffenaar JWC. Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis. 2018;66:1625–30.

    Article  PubMed  Google Scholar 

  11. Bloomberg GV, Keller PM, Stucki D, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 2015;373:1986–8.

    Article  Google Scholar 

  12. Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemothetr. 2016;72:684–90.

    Google Scholar 

  13. Liu Y, Gao M, Du J, et al. Reduced susceptibility of Mycobacterium tuberculosis to bedaquiline during antituberculous treatment and its correlation with clinical outcomes in China. Clin Infect Dis. 2021;73:e3391–7.

    Article  CAS  PubMed  Google Scholar 

  14. van Heeswijk RPG, Dannemann B, Hoetelmans RMW. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother. 20–14; 69: 2310-8.

    Google Scholar 

  15. Upton CM, Steele C, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid [CSF] in patients with pulmonary tuberculosis [TB]. J Antimicrob Chemother. 2022;77:dka067. https://doi.org/10.1093/jaqc/dkac067.

    Article  Google Scholar 

  16. Gaida R, Truter I, Peters CA. Adverse effects of bedaquiline in patients with extensively drug-resistant tuberculosis. S Afr J Infect Dis. 2020;35:23.

    PubMed  PubMed Central  Google Scholar 

  17. Olayanju O, Limberis J, Esmail A, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J. 2018;51:18005444.

    Article  Google Scholar 

  18. Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicenter study. Eur Respir J. 2017;49:1700387.

    Article  PubMed  Google Scholar 

  19. Mirzayev F, Viney K, Linh NN, et al. World Health Organization recommended treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J. 2021;57:20003300.

    Article  Google Scholar 

  20. Wang M-G, Wu S-Q, He J-Q. Efficacy of bedaquiline in the treatment of drug-resistant tuberculosis: a systemic review and meta-analysis. BMC Infect Dis. 2021;21:970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. World health Organization. WHO best-practice statement on the off-label use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis. Geneva: World Health Organization; 2017. p. 2017.

    Google Scholar 

  22. WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Available at:https://www.who.int/tb/publications/2019/consolidated-guiidelines-drug-resistant-TBtreatment/en/.Accessed 23 Nov 2021.

  23. Matsumoto M, Hashizume H, Tomishinge T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3:e466.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nguyen TVA, Anthony RM, Cao TTH, et al. Delamanid resistance: update and clinical management. Clin Infect Dis. 2020;71:3252–9.

    Article  PubMed  Google Scholar 

  25. Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid [OPC-67683] in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2011;15:949–54.

    Article  CAS  PubMed  Google Scholar 

  26. Wen S, Jing W, Zhang T, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multi-drug resistant and extensive drug-resistant tuberculosis. Eur J Clin Microbial Infect Dis. 2019;38:1293–6.

    Article  CAS  Google Scholar 

  27. Simson K, Kurepina N, Venter A, et al. MIC of delamanid [OPC-67683] against Mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrob Agents Chemother. 2016;60:3316–22.

    Article  Google Scholar 

  28. Pang Y, Zong Z, Huo F, et al. In vitro susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis. Antimicrob Agents Chemother. 2017;61:e00900–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang JS, Kim KJ, Choi H, Lee SH. Delamanid, bedaquiline, and linezolid minimum inhibitory concentration distributions and resistance related gene mutations in multidrug-resistant tuberculosis in Korea. Ann Lab Med. 2018;38:563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kempker RR, Mikiashvilli L, Zhao Y, et al. Clinical outcomes among patients with drug-resistant tuberculosis receiving bedaquiline- or delamanid-containing regimens. Clin Infect Dis. 2020;71:23336–44.

    Google Scholar 

  31. Rifat D, Li SY, Ioerger T, et al. Mutations in RV2983 as a novel determinant of resistance to nitroimidazole drugs in Mycobacterium tuberculosis. bioRxiv. 2018:457754. https://doi.org/10.1101/457754.

  32. Wang X, Mallikaarjun S, Gibiansky E. Population pharmacokinetic analysis of delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2021;65:e01202-20.

    Article  Google Scholar 

  33. Gler MT, Skripconoka V, Sanchez-Garvito E, et al. Delamanid for multidrug-resistant tuberculosis. N Engl J Med. 2012;366:2151–60.

    Article  CAS  PubMed  Google Scholar 

  34. Stancil SL, Mirzayev F, Abdel-Rahman SM. Profiling pretomanid as a therapeutic option for TB infection: evidence to date. Dovepress. 2021;15:2815–30.

    Google Scholar 

  35. McGrath M, Gey van Pitius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014;69:292–302.

    Article  CAS  PubMed  Google Scholar 

  36. Kadura S, King N, Nakhoul M, Zhu H, Theron G, Koser C, Farhal M. Systemic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75:2031–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee BM, Almeida DV, Afriat-jurnou L, et al. The evolution of nitroimidazole antibiotic resistance in Mycobacterium tuberculosis. bioRxiv. 2019;63:631127.

    Google Scholar 

  38. Salinger DH, Subramoney V, Everitt D, Nedelman JR. Population pharmacokinetics of the antituberculous agent pretomanid. Antimicrob Agents Chemother. 2019;63:e00907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glis T, Lynen L, de Jung BC, Van Duen A, Decroo T. Pretomanid for tuberculosis: a systemic review. Clin Microbial Infect. 2021; https://doi.org/10.1016/j.c.mi.2021.08.007.

  40. Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ndjeka N, Campbell JR, Meintjes G, et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022. Published online May 2, 2022;22:1042. https://doi.org/10.1016/S1473-3099[21]00811-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. World Health Organization. Rapid communication: key changes to the treatment to the treatment of drug-resistant tuberculosis. May 2, 2022. https://www.whoint/publications/i/item/WHO-UCN-TB-2022-2

  44. Hewison C, Khan U, Bastard M, et al. Safety of treatment regimens containing bedaquiline and delamanid in the endTB cohort. Clin Infect Dis. 2022. Published online Jan 13;75:1006. https://doi.org/10.1093/cid/ciao19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huerga H, Khan U, Bastard M, et al. Safety and effectiveness outcomes from a 14-country cohort of patients with multi-drug resistant tuberculosis treated concomitantly with bedaquiline, delamanid and other second-line drugs. Clin Infect Dis. 2022:ciac176. https://doi.org/10.1093/cid/ciac176.

  46. Yoshiyama T, Takaki A, Aono A, Mitarai S, Okumura M, Ohta K, Kato S. Multidrug resistant tuberculosis with simultaneous acquired drug resistance to bedaquiline and delamanid. Clin Infect Dis. 2021;73:2329–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. W. Fong .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2023). New Anti-tuberculous Drugs: Bedaquiline, Delamanid, and Pretomanid. In: New Antimicrobials: For the Present and the Future. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-031-26078-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26078-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26077-3

  • Online ISBN: 978-3-031-26078-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics