Skip to main content

Antimicrobial Resistance: A Crisis in the Making

  • Chapter
  • First Online:
New Antimicrobials: For the Present and the Future

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

Abstract

Antimicrobial resistance (AMR) is considered the silent pandemic that threatens the global public health systems and one of the biggest threats to global health, food security, and development. The emerging crisis of antimicrobial resistance is largely man-made from overuse of antibiotics in humans and animals. This chapter reviews the current status of antimicrobial resistance globally and the mechanisms by which bacteria resist antibiotics. AMR is a natural evolutionary process which predated the discovery of penicillin and allows survival of the fittest through natural selection. However, the “antibiotic pressure” driving the dynamics of AMR is largely “man-made.” Although AMR is most commonly recognized in enteric bacteria (Enterobacteriaceae) and skin flora (methicillin-resistant S. aureus), it is a threat to the global design to eradicate or control tuberculosis (multidrug-resistant and extensively drug-resistant M. tuberculosis) and malaria (artemisinin-resistant P. falciparum), certain viral infections (cytomegalovirus and human immunodeficiency virus), and specific fungal opportunistic pathogens (Candida nonalbicans and Aspergillus sp.).

It is estimated that 700,000 deaths occur yearly in the world from AMR infections and projected to escalate to ten million by 2050, if drastic global control measures are not instituted. In the United States, multidrug-resistant bacteria infections account for >20% hospitalization annually, and > 80% are community derived. The economic impact of AMR infections are huge and without immediate actions to find solutions and could result in increase in global poverty, shortage of meat, widespread unemployment, and decline in gross national product of numerous countries (greater in low-middle-income nations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.

    Article  PubMed  Google Scholar 

  2. Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA. 2018;115:E3463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Boeckel TP, Browser C, Gilbert M, et al. Global trends in antimicrobial use in food animal. Proc Natl Acad Sci U S A. 2015;112:5649–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Food and Agriculture Organization of the United Nation. (2017). http://www.fao.org/faostat/en/#home

  5. Van Boeckel TP, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science. 2019;365:eaaw1944.

    Article  PubMed  Google Scholar 

  6. European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018; https://doi.org/10.2903/j.efsa.2018.5182.

  7. Ward MJ, et al. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol. 2014;80:7275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Vries SPW, et al. Phylogenetic analysis and antimicrobial resistance profiles of Campylobacter spp. from diarrheal patients and chickens in Botswana. PLoS One. 2018;13:e0194481.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu YY, et al. Emergence of plasmid –mediated colistin resistance mechanisms MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infecty Dis. 2016;16:161–8.

    Article  Google Scholar 

  10. Tang KL, Caffrey NP, Nobrega DB, et al. Restricting the use of antibiotics in food-producing animals and its association with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 2017;1:e316–27.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Bunnik B, Woolhouse M. Modeling the impact of curtailing antibiotic usage in food animals on antibiotic resistance in humans. R Soc Open Sci. 2017;4:161067.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Forsman M, Haggerstrom B, Lindgren L, Jaurin B. Molecular analysis of β-lactamases from four species of Streptomyces: comparison of amino acid sequences with those of other β-lactamases. Microbiology. 1990;136:589–98.

    CAS  Google Scholar 

  13. Ogawara H, Kawamura N, Kudo T, Suzuki K-L, Nakase T. Distribution of β-lactamases in actinomycetes. Antimicrob Agents Chemother. 1999;43:3014–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Livermore D, Canton R, Gniadkowski M, et al. CXT-M changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59:165–74.

    Article  CAS  PubMed  Google Scholar 

  15. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Molecular Biol Rev. 2010;74:417–33.

    Article  CAS  Google Scholar 

  16. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acid Res. 2009;37:D443–7.

    Article  CAS  PubMed  Google Scholar 

  17. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Daniels G. Bacterial phylogeny structure soil r5esistomes across habitats. Nature. 2014;509:612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Etienne R, Ghozlane A, Tap J, et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol. 2018; https://doi.org/10.1038/s41564-018-0292-6.

  19. Willems RPJ, van Dijk K, Ket JCF, Vanderdroucke-Grauls CMJE. Evaluation of the association between gastric acid suppression and risk of intestinal colonization with multi-resistant microorganisms. A systematic review and meta-analysis. JAMA Intern Med. 2020; https://doi.org/10.1001/jamaiternmed.2020.0009.

  20. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017;33:300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eyal Z, Matzov D, Krupkin M, et al. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanisms. Sci Rep. 2016;6:1–8.

    Article  Google Scholar 

  22. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9:e1403.

    PubMed  PubMed Central  Google Scholar 

  23. Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol. 2002;92(Suppl):46S. 54S.

    Article  PubMed  Google Scholar 

  24. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006;119(6 Suppl 1):S3–10.

    Article  CAS  PubMed  Google Scholar 

  25. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public health threat. Lancet. 2006;368:874–85.

    Article  PubMed  Google Scholar 

  26. Giedraitiene A, Vikauskiene A, Naginiene R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). 2011;47:137–46.

    PubMed  Google Scholar 

  27. Higgins PG, Fluit AC, Schmitz FJ. Fluoroquinolones: structure and target sites. Curr Drug Targets. 2003;4:181–90.

    Article  CAS  PubMed  Google Scholar 

  28. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationship between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol. 2018; https://doi.org/10.3389/fmicb.2018.02928.

  29. Mojica MF, Bonomo RA, Fasi W. B1-metallo-beta lactamases: where do we stand? Curr Drug Targets. 2016;17:1029–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol. 2007;7:459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wright GD. Q & A: antibiotic resistance: where does it come from and what can we do about it? BMC Biol. 2010;8:123.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McMurry L, Petrucci RE Jr, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA. 1980;77:3974–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochem Biophys Acta. 2009;1794:769–81.

    CAS  PubMed  Google Scholar 

  34. Van Bambeke F, Michot JM, Tulkens PM. Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother. 2003;51:1067–77.

    Article  PubMed  Google Scholar 

  35. Blanco P, Hernando-Amado S, Reales-Calderon J, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4:14. https://doi.org/10.3390/microorganisms4010014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez L, Breidenstein EB, Hancock RE. Creping baselines and adaptive resistance to antibiotics. Drug Resis Updates. 2011;14:1–21.

    Article  CAS  Google Scholar 

  37. Anderson D, Hughes D. Selection and transmission of antibiotic resistant bacteria. Microbiol Spectr. 2017;5:1–17.

    Article  Google Scholar 

  38. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.

    Article  PubMed  Google Scholar 

  39. Dantas G, Summer MOA, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotic. Science. 2008;320:100–3.

    Article  CAS  PubMed  Google Scholar 

  40. Woodford N, Ellington MJ. The emergence of antibiotic resistant by mutation. Clin Microbiol Infect. 2007;13:5–18.

    Article  CAS  PubMed  Google Scholar 

  41. Schrag SJ, Perrot V, Levin BR. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc Lond B Biol Sci. 1997;264:1287–91.

    Article  CAS  Google Scholar 

  42. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Med Microbiol Biotechnol. 2001;3:255–64.

    CAS  Google Scholar 

  43. Heritage J, M’Zali FH, Gascoyne-Binzi D, HawKey PM. Evolution and spread of SHV extended-spectrum β-lactamases in gram-negative bacteria. J Antimicrob Chemother. 1999;44:309–18.

    Article  CAS  PubMed  Google Scholar 

  44. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic genes. Infect Drug Resis. 2014;7:167–76.

    Article  Google Scholar 

  45. Arcilla MS, van Hattem JM, Matamoros S, et al. Dissemination of themer-1colistin resistance gene. Lancet Infect Dis. 2015;16:147–9.

    Article  PubMed  Google Scholar 

  46. von Wintersdorff CJH, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystem through horizontal gene transfer. Front Microbiol. 2016; https://doi.org/10.3389/fmicb.2016.00173.

  47. Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog. 2012;8:e1002837. https://doi.org/10.1371/journal.ppat.1002837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22:416–22.

    Article  CAS  PubMed  Google Scholar 

  49. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review Antimicrob. Resistance 2016; https://amr-review.org/. Accessed 17 Apr 2020.

  50. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013; https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508-pdf

  51. Jernigan JA, Kelly M, Hatfield MSPH, et al. Multidrug–resistant bacterial infections in US hospitalized patients, 2012–2017. N Engl J Med. 2020;382:1309–19.

    Article  CAS  PubMed  Google Scholar 

  52. Antony HA, Parija SC. Antimalarial drug resistance: an overview. Trop Parasitol. 2016;6:30–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11:36–42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shrestha P, Cooper BS, Coast J, et al. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 2018;7:98. https://doi.org/10.1186/s13756-018-0384-3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thorpe KE, Joski P, Johnston KJ. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff. 2018;37:662–9.

    Article  Google Scholar 

  57. Asiam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.

    Article  Google Scholar 

  58. Drug-resistant infections a threat to our economic future; 2017. Available from: www.worldbank.org. Accessed 21 Apr 2020.

  59. Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 21 Apr 2020.

  60. Anderson M, Clift C, Schulze K, et al. Health systems and policy analysis- averting the AMR crisis: what avenues for policy. Eur Obs Heal Sys Policies. 2019; [Google Scholar]

    Google Scholar 

  61. Utt E, Wells C. The global response to the threat of antimicrobial resistance and the important role of vaccines. Pharm Policy Law. 2016;18:179–97. https://doi.org/10.3233/PPL-160442.

    Article  Google Scholar 

  62. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Animal production I antimicrobial resistance I food and agriculture organization of the United Nations. http://www.fao.org/antimicrobial-resistance/key-sectors/animal-production/en/

  64. Buchy P, Ascioglu S, Buisson Y, et al. Impact of vaccines on antimicrobial resistance. Int J Infect Dis. 2020;90:188–96.

    Article  CAS  PubMed  Google Scholar 

  65. Hicks LA, Bartoces MG, Roberts RM, et al. US outpatient antibiotic prescribing variation according to geography, patient population, and provider speciality in 2011. Clin Infect Dis. 2015;60:1308–16.

    PubMed  Google Scholar 

  66. Linder JA, Meeker D, Fox CR, Friedberg MW, Persell SD, Goldstein NJ, Doctor JN. Effects of behavioral interventions on inappropriate antibiotic prescribing in primary care 12 months after stopping the interventions. JAMA. 2017;318:1391.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Daneman N, Gruneir A, Newman A, et al. Antibiotic use in long-term care facilities. J Antimicrob Chemother. 2011;66:2856–63.

    Article  CAS  PubMed  Google Scholar 

  68. Rhee SM, Stone ND. Antimicrobial stewardship in long-term care facilities. Infect Dis Clin N Am. 2014;28:237–46.

    Article  Google Scholar 

  69. US Food and Drug Administration. Battle of the bugs: fighting the antibiotic resistance. Updated May 4, 2016.; https://www.fda.gov//drugs/resourcesforyou/consumers/ucm43568.htm

  70. Briceland LL, Nightingale CH, Quintiliani R, et al. Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Arch Intern Med. 1988;148:2019–22.

    Article  CAS  PubMed  Google Scholar 

  71. Owens RC. Antimicrobial stewardship: concepts and strategies in the 21st century. Diag Microbiol Infect Dis. 2008;61:110–28.

    Article  Google Scholar 

  72. Davey P, Marwick CA, Scott CL, et al. Interventions to improve antibiotic practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2:CD003543. https://doi.org/10.1002/14651858.CD003543.pub4.

    Article  PubMed  Google Scholar 

  73. Nathwani D, Varghese D, Stephens J, Ansari W, Martin S, Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: a systemic review. Antimicrob Resist Infect Control. 2019;8:35. https://doi.org/10.1186/s13756-019-0471-0.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vaughn VM, Flanders SA, Snyder A, et al. Excess antibiotic treatment duration and adverse events in patients hospitalized with pneumonia. Ann Intern Med. 2019;171:153–63.

    Article  PubMed  Google Scholar 

  75. Manyi-Loh C, Mamphwell S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23:795. https://doi.org/10.3390/molecules23040795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. W. Fong .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2023). Antimicrobial Resistance: A Crisis in the Making. In: New Antimicrobials: For the Present and the Future. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-031-26078-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26078-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26077-3

  • Online ISBN: 978-3-031-26078-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics