Skip to main content

A Broadband Doherty Power Amplifier for Sub-6 5G Applications

  • Conference paper
  • First Online:
Proceedings of SIE 2022 (SIE 2022)

Abstract

In this contribution, a workflow procedure adopted to design a Doherty Power Amplifier (DPA) for broadband Sub-6 5G frequency applications is presented. The approach developed accounts for loading effects of the auxiliary amplifier on the main amplifiers in back-off condition. Moreover, an improved version of optimum region (as opposed to optimum point) in the load and source pulling analysis is introduced. As proof of concept, a symmetric DPA is designed, fabricated and tested. The measurements showed a working frequency band from 3.3 to 3.9 GHz (aimed at n78 band of 5G-NR), a minimum peak output power of 36 W, with a drain efficiency between 48% and 53.22% at peak power, and 34.6%–44.5% at 6 dB of back-off while the transistor maintained a minimum gain of 5.4 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doherty, W.H.: A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng. 24(9), 1163–1182 (1936)

    Google Scholar 

  2. Iwamoto, M., et al.: An extended Doherty amplifier with high efficiency over a wide power range. In: 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157), vol. 2. Phoenix, AZ, USA: IEEE, pp. 931–934 (2001). [Online]. http://ieeexplore.ieee.org/document/967044/

  3. Sun, G., Jansen, R.: Broadband doherty power amplifier via real frequency technique. IEEE Trans. Microwave Theory Techn. 60(1), 99–111 (2012). http://ieeexplore.ieee.org/document/6084840/

  4. Chen, S., Wang, G., Cheng, Z., Xue, Q.: A bandwidth enhanced doherty power amplifier with a compact output combiner. IEEE Microw. Wirel. Compon. Lett. 26(6), 434–436 (2016). http://ieeexplore.ieee.org/document/7465688/

  5. Rafati, S., Nayyeri, V., Soleimani, M.: A 100-W Doherty power amplifier with super-octave bandwidth. IEEE Trans. Circuits Syst. II Exp. Briefs 67(6), 1009–D1013 (2020). [Online]. https://ieeexplore.ieee.org/document/8765596/

  6. Fang, X. H., Cheng, K.-K. M.: Extension of high-efficiency range of doherty amplifier by using complex combining load. IEEE Trans. Microw. Theory nd Techn. 62(9), 2038–2047(2014). [Online]. http://ieeexplore.ieee.org/document/6850081/

  7. Camarchia, V., et al.: A design strategy for AM/PM Compensation in GaN doherty power amplifiers. IEEE Access 5, 22 244–22 251 (2017). [Online]. https://ieeexplore.ieee.org/document/8057734/

  8. Colantonio, P., Giannini, F., Giofrè, R., Piazzon, L.: The AB-C doherty power amplifier. Part I: theory. Int. J. RF Microw. Comput. Aided Eng. 19(3), 293–306 (2009) (ISSN: 1096-4290)

    Google Scholar 

  9. Colantonio, P., Giannini, F., Giofrè, R., Piazzon, L.: The AB-C doherty power amplifier. Part II: validation. Int. J. RF Microw. Comput. Aided Eng. 9(3), 307–316 (2009) (ISSN: 1096-4290)

    Google Scholar 

  10. Pang, J., He, S., Dai, Z., Huang, C., Peng, J., You, J.: Design of a Post-matching asymmetric doherty power amplifier for broadband applications. IEEE Microw. Wirel. Compon. Lett. 26(1), 52–54 (2016). [Online]. http://ieeexplore.ieee.org/document/7358163/

  11. Zhou, X. Y., Zheng, S.Y., Chan, W.S., Chen, S., Ho, D.: Broadband efficiency-enhanced mutually coupled harmonic postmatching doherty power amplifier,” IEEE Trans. Circuits Syst. I: Regul. Papers 64(7), 1758–1771 (2017). [Online]. http://ieeexplore.ieee.org/document/7862117/

  12. Akbarpour, M., Helaoui, M., Ghannouchi, F.M.: A Transformer- less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans. Microw. Theory Techn. 60(9,) 2863–2874 (2012). [Online]. http://ieeexplore.ieee.org/document/6236239/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Colantonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahmordi, M., Javid-Hosseini, SH., Nayyeri, V., Giofrè, R., Colantonio, P. (2023). A Broadband Doherty Power Amplifier for Sub-6 5G Applications. In: Cocorullo, G., Crupi, F., Limiti, E. (eds) Proceedings of SIE 2022. SIE 2022. Lecture Notes in Electrical Engineering, vol 1005. Springer, Cham. https://doi.org/10.1007/978-3-031-26066-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26066-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26065-0

  • Online ISBN: 978-3-031-26066-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics