Skip to main content

Evolution of Approaches to Modelling Geomechanical Processes in Oil and Gas Reservoirs

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes—2022 (PMMEEP 2022)

Abstract

The article describes the main stages of approaches evolution to modeling geomechanical processes in oil and gas science. The paper outlines the key ideas of physical modeling and the leading directions of mathematical modeling used for studying geomechanical processes, production forecasting and evaluation of maximum recoverable oil reserves. Disclosed the main disadvantages and advantages of analytical, statistical and numerical methods, as well as indicating their applicability limits. The analysis of scientific works, devoted to the development of mathematical methods of modeling, dedicated to the prediction of development indicators on the basis of displacement characteristics and decline curves, is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vasiliev K. K. Mathematical modeling of communication systems: textbook / K. K. Vasiliev, M. N. Sluzhivyi. – 2-edition, revised. and supplementary – Ulyanovsk: ULSTU, 2010. 170 p.

    Google Scholar 

  2. Karev V., Kovalenko Y., Ustinov K., 2020. Advances in Oil and Gas Exploration and Production. Switzerland: Springer International Publishing. 2020. 166 p.

    Google Scholar 

  3. Gultyaev A.V. Visual modeling in MATLAB environment: training course / A.V. Gultyaev. SPb. 2000. 432 p.

    Google Scholar 

  4. Darcy H. Recherches experimentales relatives au mouvement de l’eau dans les tuyaux. Paris. 1857.

    Google Scholar 

  5. Dupuit J. Essai et experiences sur le tirage de voitures et sur le frottement de second espece. Paris: Carilian – Goeury. 1837.

    Google Scholar 

  6. Zhukovsky N.E. Water infiltration through dams. Experimental-meliorative. Part. Moscow, NKZ, part 3. collection of works, V. 7, M., Gostoptekhizdat, 1956.

    Google Scholar 

  7. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. About Basic Representations of Filtration Theory in Cracked Media. – Appl. Math. and Mechanics, V. 24 (5). 1960. pp. 58–73.

    Google Scholar 

  8. Pavlovsky N.N. Hydraulic Handbook, 1936. 890 p.

    Google Scholar 

  9. Leibenzon L.S. The motion of natural fluids and gases in a porous medium. OGIZ. State Publishing House of Technical and Theoretical Literature, Moscow, 1947. 244p.

    Google Scholar 

  10. Carman P.C. Flow of gases in porous media. London, 1956. 182 p.

    Google Scholar 

  11. Kozeny, J. Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss., Wien, 136(2a), 1927. pp. 271–306.

    Google Scholar 

  12. Adzumi H. Bull. Chem. Soc. Japan. 12. 304. 1937.

    Google Scholar 

  13. Polubarinova-Kochina P.Ya. About inclined and horizontal wells of finite length // Applied mathematics and mechanics. V.20 (1). 1956. p.95–108.

    Google Scholar 

  14. Dementev L.F. Statistical methods of processing and analysis of field geological data. – Moscow: Nedra, 1966. 208 p.

    Google Scholar 

  15. Gattenberger Yu.P., Dyakonov V.P. Hydrogeological methods of research in exploration and development of oil fields. Moscow: Nedra, 1979. 207 p.

    Google Scholar 

  16. Surguchev M.L. Methods of control and regulation of the process of development of oil fields. Moscow: Nedra, 1968. 301 p.

    Google Scholar 

  17. Nazarov S.N., Sipachev N.V. Technique for forecasting technological indicators at the late stage of oil reservoir development // Oil and Gas. 10. 1972. p. 41–45.

    Google Scholar 

  18. Saveliev V.A., Tokarev M.A., Chinarov A.S. Geological and field methods of oil recovery forecasting: Textbook // V. Saveliev, M. Tokarev, A. Chinarov. Izhevsk: Publishing house “Udmurt University”. 2008. 147 p.

    Google Scholar 

  19. Maksimov M.M., Rybitskaya L.P. Mathematical modeling of processes of development of oil fields. Moscow: Nedra, 1976. 64 p.

    Google Scholar 

  20. Sazonov B.F. Improvement of oil field development technology under water pressure regime. Moscow: Nedra, 1973. 283 p.

    Google Scholar 

  21. Shavaliyev A.M. Statistical study of oil recovery and water-oil factor in the fields of the Ural-Volga region // Oil Economy. 12. 1981. p. 30–32.

    Google Scholar 

  22. Fetkovich M.J. The Isochronal Testing of Oil Wells // Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, Nevada, 1973. p. 24. SPE 4529. DOI: https://doi.org/10.2118/4529-MS.

  23. Fetkovich M.J. Decline Curve Analysis Using Type Curves // J. Pet Technol. V.32. 1980. pp. 1065–1077. DOI: https://doi.org/10.2118/4629-PA.

  24. Arps J.J. Analysis of Decline Curves // Trans. AIME, V. 160. 1945. pp. 228–247.

    Google Scholar 

  25. Tung L.V. Analysis of the state of oil production in the field “X” Vietnam: master's thesis. National Research Tomsk Polytechnic University, Tomsk, 2018.

    Google Scholar 

  26. Peaceman D.W., Rachford, H.H., Numerical calculation of multidimensional miscible displacement. Trans. SPE of AIME, 225. 1962. pp. 327–39 (SPEJ).

    Google Scholar 

  27. Smith G. D. Numerical Solution of Partial Differential Equations with Exercises and Worked Solutions, Oxford University Press, New York. 1965.

    Google Scholar 

  28. Masket M. The flow of a homogeneous fluid through a porous medium // translated by M.A. Geiman. M.: Gostekhizdat, 1949. 628 p.

    Google Scholar 

  29. Richardson J.G., Stone H.L. A quarter century of progress in the application of reservoir engineering, J. Petrol. Technol., 25, 1973. pp. 1371–9.

    Google Scholar 

  30. Katz P.M., Andriasov A.R. Mathematical model of three-phase filtration in fractured-porous medium // Collection of scientific papers of VNII. V. 95. 1986. pp. 61–66.

    Google Scholar 

  31. Kazemi H. Pressure transient analysis of naturally fractured reservoir with uniform fracture distribution. Soc. of Petroleum Engineers Journal, 1969. pp. 451 – 426.

    Google Scholar 

  32. Kleppe J., Morse R.A. Oil production from fractured reservoirs by water displacement, SPE 5084, 49/A Annual Fall Meeting, Houston. 1974.

    Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the state assignment, registration number AAAA-A20-120011690133-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Barkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barkov, S.O., Khimulia, V.V. (2023). Evolution of Approaches to Modelling Geomechanical Processes in Oil and Gas Reservoirs. In: Karev, V.I. (eds) Physical and Mathematical Modeling of Earth and Environment Processes—2022. PMMEEP 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-25962-3_23

Download citation

Publish with us

Policies and ethics