Skip to main content

Exercise Testing and Its Role in Ischemic Heart Disease

  • Chapter
  • First Online:
Ischemic Heart Disease

Abstract

Exercise testing is widely used as a provocative test in patients with known or suspected ischemic heart disease, to identify coronary artery stenosis, evaluate exercise-related symptoms, assess response to interventions, and predict cardiovascular events and all-cause death. Adequate equipment and patient preparation, as well as an appropriate patient selection, are necessary to increase the diagnostic yield of exercise testing and to reduce false-positive and false-negative results. Availability of imaging modalities, such as stress echocardiography and myocardial single photon emission tomography, has provided clinicians with effective diagnostic tool and prompts an individualized selection of the most appropriate test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFR:

Coronary flow reserve

CO:

Cardiac output

CPET:

Cardiopulmonary exercise testing

HR:

Heart rate

LV:

Left ventricular

LVEF:

LV ejection fraction

METS:

Metabolic equivalents

RWM:

Regional wall motion

SE:

Stress echocardiography

SV:

Stroke volume

WMSI:

Wall motion score index

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77.

    Article  PubMed  Google Scholar 

  2. Knuuti J, Ballo H, Juarez-Orozco LE, Saraste A, Kolh P, Rutjes AWS, et al. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. Eur Heart J. 2018;39:3322–30.

    Article  PubMed  Google Scholar 

  3. Zacharias K, Ahmed A, Shah BN, Gurunathan S, Young G, Acosta D, et al. Relative clinical and economic impact of exercise echocardiography vs. exercise electrocardiography, as first line investigation in patients without known coronary artery disease and new stable angina: a randomized prospective study. Eur Heart J Cardiovasc Imaging. 2017;18:195–202.

    Article  PubMed  Google Scholar 

  4. Jørgensen ME, Andersson C, Nørgaard BL, Abdulla J, Shreibati JB, Torp-Pedersen C, et al. Functional testing or coronary computed tomography angiography in patients with stable coronary artery disease. J Am Coll Cardiol. 2017;69:1761–70.

    Article  PubMed  Google Scholar 

  5. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.

    Article  PubMed  Google Scholar 

  6. Garner KK, Pomeroy W, Arnold JJ. Exercise stress testing: indications and common questions. Am Fam Physician. 2017;96:293–9.

    PubMed  Google Scholar 

  7. Bourque JM, Beller GA. Value of exercise ECG for risk stratification in suspected or known CAD in the era of advanced imaging technologies. JACC Cardiovasc Imaging. 2015;8:1309–21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40:1531–40.

    Article  PubMed  Google Scholar 

  9. Okin PM, Bergman G, Kligfield P. Effect of ST segment measurement point on performance of standard and heart rate-adjusted ST segment criteria for the identification of coronary artery disease. Circulation. 1991;84:57–66.

    Article  CAS  PubMed  Google Scholar 

  10. Gianrossi R, Detrano R, Mulvihill D, Lehmann K, Dubach P, Colombo A, et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation. 1989;80:87–98.

    Article  CAS  PubMed  Google Scholar 

  11. Stuart RJ, Ellestad MH. Upsloping S-T segments in exercise stress testing. Six year follow-up study of 438 patients and correlation with 248 angiograms. Am J Cardiol. 1976;37:19–22.

    Article  CAS  PubMed  Google Scholar 

  12. Beinart R, Matetzky S, Shechter M, Fefer P, Rozen E, Beinart T, et al. Stress-induced ST-segment elevation in patients without prior Q-wave myocardial infarction. J Electrocardiol. 2008;41:312–7.

    Article  PubMed  Google Scholar 

  13. Widlansky S, McHenry PL, Corya BC, Phillips JF. Coronary angiographic, echocardiographic, and electrocardiographic studies on a patient with variant angina due to coronary artery spasm. Am Heart J. 1975;90:631–5.

    Article  CAS  PubMed  Google Scholar 

  14. Beckerman J, Mathur A, Stahr S, Myers J, Chun S, Froelicher V. Exercise-induced ventricular arrhythmias and cardiovascular death. Ann Noninvasive Electrocardiol. 2005;10:47–52.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CN, Lauer MS, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353:468–75.

    Article  CAS  PubMed  Google Scholar 

  16. Morris CK, Morrow K, Froelicher VF, Hideg A, Hunter D, Kawaguchi T, et al. Prediction of cardiovascular death by means of clinical and exercise test variables in patients selected for cardiac catheterization. Am Heart J. 1993;125:1717–26.

    Article  CAS  PubMed  Google Scholar 

  17. Goldschlager N, Selzer A, Cohn K. Treadmill stress tests as indicators of presence and severity of coronary artery disease. Ann Intern Med. 1976;85:277–86.

    Article  CAS  PubMed  Google Scholar 

  18. Dewey FE, Kapoor JR, Williams RS, Lipinski MJ, Ashley EA, Hadley D, et al. Ventricular arrhythmias during clinical treadmill testing and prognosis. Arch Intern Med. 2008;168:225–34.

    Article  PubMed  Google Scholar 

  19. Mark DB, Shaw L, Harrell FE Jr, Hlatky MA, Lee KL, Bengtson JR, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med. 1991;325:849–53.

    Article  CAS  PubMed  Google Scholar 

  20. Picano E. Stress echocardiography. 6th ed. Heidelberg: Springer Verlag; 2015.

    Book  Google Scholar 

  21. Picano E. Dipyridamole-echocardiography test: historical background and physiologic basis. Eur Heart J. 1989;10:365–76.

    Article  CAS  PubMed  Google Scholar 

  22. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and Standards Committee and the Chamber quantification Writing group, developed in conjunction with the European Association of echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.

    Article  PubMed  Google Scholar 

  23. Nihoyannopoulos P, Kaski J-C, Crake T, Maseri A. Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol. 1991;18:1463–70.

    Article  CAS  PubMed  Google Scholar 

  24. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  25. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J. 2007;154:415–23.

    Article  PubMed  Google Scholar 

  26. Severi S, Picano E, Michelassi C, Lattanzi F, Landi P, Distante A, et al. Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease. Comparison with exercise electrocardiography. Circulation. 1994;89:1160–73.

    Article  CAS  PubMed  Google Scholar 

  27. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, et al. Stress echocardiography expert consensus statement. Eur J Echocardiogr. 2008;9:415–37.

    Article  PubMed  Google Scholar 

  28. Lattanzi F, Picano E, Bolognese L, Piccinino C, Sarasso G, Orlandini A, et al. Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation. 1991;83:1256–62.

    Article  CAS  PubMed  Google Scholar 

  29. Yao SS, Qureshi E, Sherrid MV, Chaudhry FA. Practical applications in stress echocardiography: risk stratification and prognosis in patients with known or suspected ischemic heart disease. J Am Coll Cardiol. 2003;42:1084–90.

    Article  PubMed  Google Scholar 

  30. Marwick TH, Case C, Sawada S, Rimmerman C, Brenneman P, Kovacs R, et al. Prediction of mortality using dobutamine echocardiography. J Am Coll Cardiol. 2001;37:754–60.

    Article  CAS  PubMed  Google Scholar 

  31. Marwick TH, Case C, Vasey C, Allen S, Short L, Thomas JD. Prediction of mortality by exercise echocardiography: a strategy for combination with the Duke treadmill score. Circulation. 2001;103:2566–71.

    Article  CAS  PubMed  Google Scholar 

  32. McCully RB, Roger VL, Mahoney DW, Karon BL, Oh JK, Miller FA Jr, et al. Outcome after normal exercise echocardiography and predictors of subsequent cardiac events: follow-up of 1,325 patients. J Am Coll Cardiol. 1998;31:144–9.

    Article  CAS  PubMed  Google Scholar 

  33. McCully RB, Ommen SR, Klarich KW, Burger KN, Mahoney DW, Pellikka PA. Prognosis of patients with good exercise capacity and mildly abnormal exercise echocardiography results: identification of an at-risk subgroup. J Am Soc Echocardiogr. 2005;18:644–8.

    Article  PubMed  Google Scholar 

  34. McCully RB, Roger VL, Ommen SR, Mahoney DW, Burger KN, Freeman WK, et al. Outcomes of patients with reduced exercise capacity at time of exercise echocardiography. Mayo Clin Proc. 2004;79:750–7.

    Article  PubMed  Google Scholar 

  35. Elhendy A, Mahoney DW, Khandheria BK, Burger K, Pellikka PA. Prognostic significance of impairment of heart rate response to exercise: impact of left ventricular function and myocardial ischemia. J Am Coll Cardiol. 2003;42:823–30.

    Article  PubMed  Google Scholar 

  36. Arruda-Olson A, Juracan E, Mahoney D, McCully R, Roger V, Pellikka P. Prognostic value of exercise echocardiography in 5,798 patients: is there a gender difference? J Am Coll Cardiol. 2002;39:625–31.

    Article  PubMed  Google Scholar 

  37. Smart SC, Sawada S, Ryan T, Segar D, Atherton L, Berkovitz K, et al. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation. 1993;88:405–15.

    Article  CAS  PubMed  Google Scholar 

  38. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, et al. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol. 1996;28:558–64.

    Article  CAS  PubMed  Google Scholar 

  39. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol. 1997;30:1451–60.

    Article  CAS  PubMed  Google Scholar 

  40. Picano E, Pingitore A, Conti U, Kozàkovà M, Boem A, Cabani E, et al. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography. Eur Heart J. 1993;14:1216–22.

    Article  CAS  PubMed  Google Scholar 

  41. Dal Porto R, Faletra F, Picano E, Pirelli S, Moreo A, Varga A. Safety, feasibility, and diagnostic accuracy of accelerated high-dose dipyridamole stress echocardiography. Am J Cardiol. 2001;87:520–4.

    Article  CAS  PubMed  Google Scholar 

  42. Zoghbi WA, Cheirif J, Kleiman NS, Verani MS, Trakhtenbroit A. Diagnosis ofischemic heart disease with adenosine echocardiography. J Am Coll Cardiol. 1991;18:1271–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hoffer EP, Dewe W, Celentano C, Pierard LA. Low-level exercise echocardiography detects contractile reserve and predicts reversible dysfunction after acute myocardial infarction: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol. 1999;34:989–97.

    Article  CAS  PubMed  Google Scholar 

  44. Lu C, Carlino M, Fragasso G, Maisano F, Margonato A, Cappelletti A, et al. Enoximone echocardiography for predicting recovery of left ventricular dysfunction after revascularization: a novel test for detecting myocardial viability. Circulation. 2000;101:1255–60.

    Article  CAS  PubMed  Google Scholar 

  45. Ghio S, Constantin C, Raineri C, Fontana A, Klersy C, Campana C, et al. Enoximone echocardiography: a novel test to evaluate left ventricular contractile reserve in patients with heart failure on chronic betablocker therapy. Cardiovasc Ultrasound. 2003;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mahajan N, Polavaram L, Vankayala H, Ference B, Wang Y, Ager J, et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: a comparative meta-analysis. Heart. 2010;96:956–66.

    Article  CAS  PubMed  Google Scholar 

  47. Picano E, Molinaro S, Pasanisi E. The diagnostic accuracy of pharmacological stress echocardiography for the assessment of coronary artery disease: a meta-analysis. Cardiovasc Ultrasound. 2008;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1–41.

    Article  PubMed  Google Scholar 

  49. Watson DD, Glover DK. Overview of tracer kinetics and cellular mechanisms of uptake. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology. 4th ed. Elsevier: Mosby; 2020. p. 3–13.

    Google Scholar 

  50. Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation. 1981;64:610–8.

    Article  CAS  PubMed  Google Scholar 

  51. Beller GA, Holzgrefe HH, Watson DD. Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation. 1983;68:1328–38.

    Article  CAS  PubMed  Google Scholar 

  52. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic myocardium from infracted myocardium by serial imaging after a single dose of thallium-201. Circulation. 1977;55:294–302.

    Article  CAS  PubMed  Google Scholar 

  53. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108:1404–18.

    Article  PubMed  Google Scholar 

  54. Sharir T, Germano G, Kavanagh PB, Shenan L, Cohen I, Lewin HC, et al. Incremental prognostic value of poststress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation. 1999;100:1035–42.

    Article  CAS  PubMed  Google Scholar 

  55. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11:171–85.

    Article  PubMed  Google Scholar 

  56. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: an evaluation of incremental prognostic value and cost-effectiveness. Circulation. 2002;105:823–9.

    Article  PubMed  Google Scholar 

  57. Bourque JM, Holland BH, Watson DD, Beller GA. Achieving an exercise workload of ≥10 metabolic equivalents predicts a very low risk of inducible ischemia: does myocardial perfusion imaging have a role? J Am Coll Cardiol. 2009;54:538–45.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  59. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three vessel coronary artery disease. J Am Coll Cardiol. 2003;42:64–70.

    Article  PubMed  Google Scholar 

  60. Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–21.

    Article  PubMed  Google Scholar 

  61. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:2182–99.

    Article  Google Scholar 

  62. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2016;133:e694–711.

    Article  PubMed  Google Scholar 

  63. Guazzi M, Bandera F, Ozemek C, Systrom D, Arena R. Cardiopulmonary exercise testing: what is its value? J Am Coll Cardiol. 2017;70:1618–36.

    Article  PubMed  Google Scholar 

  64. Chaudhry S, Arena R, Bhatt DL, Verma S, Kumar N. A practical clinical approach to utilize cardiopulmonary exercise testing in the evaluation and management of coronary artery disease: a primer for cardiologists. Curr Opin Cardiol. 2018;33:168–77.

    Article  PubMed  Google Scholar 

  65. Chaudhry S, Kumar N, Behbahani H, Bagai A, Singh BK, Menasco N, et al. Abnormal heart-rate response during cardiopulmonary exercise testing identifies cardiac dysfunction in symptomatic patients with non-obstructive coronary artery disease. Int J Cardiol. 2017;228:114–21.

    Article  PubMed  Google Scholar 

  66. Belardinelli R, Lacalaprice F, Carle F, Minnucci A, Cianci G, Perna G, et al. Exercise-induced myocardial ischaemia detected by cardiopulmonary exercise testing. Eur Heart J. 2003;24:1304–13.

    Article  PubMed  Google Scholar 

  67. Belardinelli R, Lacalaprice F, Tiano L, Mucai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. Int J Cardiol. 2014;174:337–42.

    Article  PubMed  Google Scholar 

  68. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134:e653–e99.

    Article  PubMed  Google Scholar 

  69. Khan H, Jaffar N, Rauramaa R, Kurl S, Savonen K, Laukkanen JA. Cardiorespiratory fitness and nonfatal cardiovascular events: a population-based follow-up study. Am Heart J. 2017;184:55–61.

    Article  PubMed  Google Scholar 

  70. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation. Circulation. 2002;106:666–71.

    Article  PubMed  Google Scholar 

  71. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol. 2003;42:2139–43.

    Article  PubMed  Google Scholar 

  72. Pauly DF, Johnson BD, Anderson RD, Handberg EM, Smith KM, Cooper-DeHoff RM, et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: a double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2011;162:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaudhry S, Arena R, Wasserman K, Hansen JE, Lewis GD, Myers J, et al. The utility of cardiopulmonary exercise testing in the assessment of suspected microvascular ischemia. Int J Cardiol. 2011;148:e7–9.

    Article  PubMed  Google Scholar 

  74. Pavia L, Orlando G, Myers J, Maestri M, Rusconi C. The effect of beta-blockade therapy on the response to exercise training in postmyocardial infarction patients. Clin Cardiol. 1995;18:716–20.

    Article  CAS  PubMed  Google Scholar 

  75. Rozenbaum Z, Khoury S, Aviram G, Gura Y, Sherez J, Man A, et al. Discriminating circulatory problems from deconditioning: echocardiographic and cardiopulmonary exercise test analysis. Chest. 2017;151:431–40.

    Article  PubMed  Google Scholar 

  76. Contini M, Andreini D, Agostoni P. Cardiopulmonary exercise test evidence of isolated right coronary artery disease. Int J Cardiol. 2006;113:281–2.

    Article  PubMed  Google Scholar 

  77. Kwok Y, Kim C, Grady D, Segal M, Redberg R. Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol. 1999;83:660–6.

    Article  CAS  PubMed  Google Scholar 

  78. Valeti US, Miller TD, Hodge DO, Gibbons RJ. Exercise single-photon emission computed tomography provides effective risk stratification of elderly men and elderly women. Circulation. 2005;111:1771–6.

    Article  PubMed  Google Scholar 

  79. Iskandrian AS, Heo J, Decoskey D, Askenase A, Segal BL. Use of exercise thallium-201 imaging for risk stratification of elderly patients with coronary artery disease. Am J Cardiol. 1988;61:269–72.

    Article  CAS  PubMed  Google Scholar 

  80. Albers AR, Krichavsky MZ, Balady GJ. Stress testing in patients with diabetes mellitus: diagnostic and prognostic value. Circulation. 2006;113:583–92.

    Article  PubMed  Google Scholar 

  81. Lee DP, Fearon WF, Froelicher VF. Clinical utility of the exercise ECG in patients with diabetes and chest pain. Chest. 2001;119:1576–81.

    Article  CAS  PubMed  Google Scholar 

  82. Wiersma JJ, Verberne HJ, Trip MD, En Holt WL, van Eck-Smit BL, Piek JJ, et al. Prevalence of myocardial ischaemia as assessed with myocardial perfusion scintigraphy in patients with diabetes mellitus type 2 and mild angina symptoms. Eur J Nucl Med Mol Imaging. 2006;33:1468–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vergaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vergaro, G., Spini, V., Fabiani, I. (2023). Exercise Testing and Its Role in Ischemic Heart Disease. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics