Skip to main content

Video Quality Assessment Considering the Features of the Human Visual System

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Abstract

Nowadays, numerous video compression quality assessment metrics are available. Some of these metrics are “objective” and only tangentially represent how a human observer rates video quality. On the other hand, models of the human visual system have been shown to be effective at describing spatial coding. In this work we propose a new quality metric which extends the peak signal to noise ratio metric with features of the human visual system measured using modern LCD screens. We also analyse the current visibility models of the early visual system and compare the commonly used quality metrics with metrics containing data modelling human perception. We examine the Pearson’s linear correlation coefficient of the various video compression quality metrics with human subjective scores on videos from the publicly available Netflix data set. Of the metrics tested, our new proposed metric is found to have the most stable high performance in predicting subjective video compression quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozhaeva, A., Vlasuyk, I., Potashnikov, A., Streeter, L.: Full reference video quality assessment metric on base human visual system consistent with PSNR. In: 2021 28th Conference of Open Innovations Association (FRUCT), pp. 309–315 (2021)

    Google Scholar 

  2. Mohammadu, P., Ebrahimi-Moghadam, A., Shirani, S.: Subjective and objective quality assessment of image: a survey. Majlesi J. Electr. Eng. 9(1), 55–83 (2015)

    Google Scholar 

  3. Mantiuk, R., et al.: FovVideoVDP: a visible difference predictor for wide field-of-view video. ACM Trans. Graph. 40, 1–19 (2021)

    Article  Google Scholar 

  4. Ying, Z., Niu, H., Gupta, P., Mahajan, D., Ghadiyaram, D., Bovik, A.: From patches to pictures (PaQ-2-PiQ): mapping the perceptual space of picture quality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3575–3585 (2020)

    Google Scholar 

  5. Kulikowski, J.: Some stimulus parameters affecting spatial and temporal resolution in human vision. Vis. Res. 11, 83–93 (1971)

    Article  Google Scholar 

  6. Watson, A.: High frame rates and human vision: a view through the window of visibility. SMPTE Motion Imaging J. 122, 18–32 (2013)

    Article  Google Scholar 

  7. Watson, A., Ahumada, A.: The pyramid of visibility. J. Vis. 16(12), 567 (2016)

    Article  Google Scholar 

  8. Mantiuk, R., Ashraf, M., Chapiro, A.: stelaCSF - a unified model of contrast sensitivity as the function of spatio-temporal frequency, eccentricity, luminance and area. ACM Trans. Graph. (Proceedings of SIGGRAPH 2022) 41(4), 1–19 (2022). Article no. 145

    Google Scholar 

  9. Mozhaeva, A., Vlasuyk, I., Potashnikov, A., Cree, M.J., Streeter, L.: The method and devices for research the parameters of the human visual system to video quality assessment. In: 2021 Systems of Signals Generating and Processing in the Field of Onboard Communications, pp. 1–5 (2021)

    Google Scholar 

  10. Wang, Z., Bovik, A.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Sig. Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  11. Seshadrinathan, K., Bovik, A.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Trans. Image Process. 19(2), 335–350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. National Research Council: Human Performance Models for Computer Aided Engineerings. The National Academies Press (1989)

    Google Scholar 

  13. Barten, P.: Formula for the contrast sensitivity of the human eye. In: Proceedings Volume 5294, Image Quality and System Performance, pp. 231–238 (2003)

    Google Scholar 

  14. Daly, S.: Visible differences predictor: an algorithm for the assessment of image fidelity. In: Proceedings of SPIE 1666, Human Vision, Visual Processing, and Digital Display III (1992)

    Google Scholar 

  15. Kelly, D.: Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 10(10), 1340–1349 (1979)

    Article  Google Scholar 

  16. de Lange, H.: Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. Attenuation characteristics with white and colored light. J. Opt. Soc. Am. 48(11), 777–784 (1958)

    Article  Google Scholar 

  17. Campbell, F., Cooper, G., Robson, J.: Application of Fourier analysis to the visibility of gratings. J. Physiol. 179(3), 551–566 (1968)

    Article  Google Scholar 

  18. van Nes, F., Bouman, M.: Spatial modulation transfer in the human eye. J. Opt. Soc. Am. 57(3), 401–406 (1967)

    Article  Google Scholar 

  19. Potashnikov, A., Vlasuyk, I., Augstkaln, I.: Analysis of methods for detecting moving objects of different types on video image. In: Fundamental Problems of Radio Electronic Instrumentation, pp. 1201–1204 (2017)

    Google Scholar 

  20. Gonzalez, R., Woods, R.: Digital Image Processing. Technosphere, Moscow (2012)

    Google Scholar 

  21. Poynton, K.: Digital Video and HD. Algorithms and Interfaces, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2012)

    Google Scholar 

  22. Vlasuyk, I.: Development of a model of the human visual system for the method of objective image quality control in digital television systems. Telecommun. Transp. 51, 189–192 (2009)

    Google Scholar 

  23. Hubel, D.H.: Eye, Brain, Vision. Mir, Moscow (1990)

    Google Scholar 

  24. Mozhaeva, A., Potashnikov, A., Vlasuyk, I., Streeter, L.: Constant subjective quality database: the research and device of generating video sequences of constant quality. In: International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, pp. 1–5 (2021)

    Google Scholar 

  25. Liu, T.-J., Lin, Y.-C., Lin, W., Kuo, C.-C.J.: Visual quality assessment: recent developments, coding applications and future trends. APSIPA Trans. Sig. Inf. Process. 2(1), 20 (2013)

    Google Scholar 

  26. Li, Z., Aaron, A., Katsavounidis, I., Moorthy, A., Manohara, M.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Soundararajan, R., Bovik, A.C.: Video quality assessment by reduced reference spatio-temporal entropic differencing. IEEE Trans. Circ. Syst. Video Technol. 23(4), 684–694 (2012)

    Article  Google Scholar 

  28. Narwaria, M., Da Silva, M.P., Le Callet, P.: HDR-VQM: an objective quality measure for high dynamic range video. Sig. Process. Image Commun. 35, 46–60 (2015)

    Article  Google Scholar 

  29. Bampis, C.G., Li, Z., Moorthy, A.K., Katsavounidis, I., Aaron, A., Bovik, A.C.: Study of temporal effects on subjective video quality of experience. IEEE Trans. Image Process. 26(11), 5217–5231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bampis, C.G., Li, Z., Moorthy, A.K., Katsavounidis, I., Aaron, A., Bovik, A.C.: LIVE Netflix Video Quality of Experience Database. http://live.ece.utexas.edu/research/LIVE_NFLXStudy/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Streeter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mozhaeva, A., Mazin, V., Cree, M.J., Streeter, L. (2023). Video Quality Assessment Considering the Features of the Human Visual System. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics