Skip to main content

Preserving Etrog Quality After Harvest: Doctrine and Practice

  • Chapter
  • First Online:
The Citron Compendium

Abstract

Citron (Citrus medica L.) fruits (“etrog” in Hebrew; plural “etrogim”) are used ritually in the Jewish holiday of Sukkot (Tabernacles) and can command as much as US$100 per fruit, depending on quality. The etrog is unique among citrus fruits in that only the external attributes are of commercial importance. Maintaining physical fruit quality mandates the use of protective cushioning on the tree, at harvest, and in packaging to avoid scratches, puncture marks or damage to the stem or pedicel (pitam). Growers use a wide range of chemical treatments post-harvest to reduce to a minimum the possibility of disfiguring insect or disease infestations. Most etrog varieties are highly susceptible to chilling injury if stored at less than 12 °C. Etrogim lose water readily during storage, so fruit are stored and almost always marketed in plastic bags that limit water loss. Peel color is regulated with applications of ethylene or gibberellin, depending on whether specific markets prefer fruit that are green or yellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, Ed 2. Academic Press, New York

    Google Scholar 

  • Aharoni N (1989) Interrelationship between ethylene and growth regulators in the senescence of lettuce leaf discs. J Plant Growth Regul 8:309–317

    Article  CAS  Google Scholar 

  • Azoulay-Shemer T, Harpaz-Saad S, Belausov E et al (2008) Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiol 148:108–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkley NA, Roose ML, Krueger RR et al (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531‏

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary PR, Jayaprakasha G, Porat R et al (2014) Low temperature conditioning reduces chilling injury while maintaining quality and certain bioactive compounds of ‘Star Ruby’ grapefruit. Food Chem 153:243–249

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Shapiro B, Shalom Y et al (1994) Water loss: a nondestructive indicator of enhanced cell membrane permeability of chilling-injured citrus fruit. J Am Soc Hortic Sci 119:983–986

    Article  Google Scholar 

  • Droby S, Cohen L, Daus A et al (1998) Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101‏

    Article  Google Scholar 

  • Eckert JW, Eaks IL (1989) Postharvest disorders and diseases of citrus fruits. The Citrus Industry 5:179–260‏

    Google Scholar 

  • Erasmus A, Lennox CL, Korsten L et al (2015) Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mould: impact and options. Postharv Biol Technol 107:66–76‏

    Article  CAS  Google Scholar 

  • Fallik E (2011) Hot water treatments of fruits and vegetables for postharvest storage. Hortic Rev 38:191–212

    CAS  Google Scholar 

  • Fujii H, Shimada T, Sugiyama A et al (2008) Profilling gibberellin (GA3)-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Sci Hortic 116:291–298‏

    Article  CAS  Google Scholar 

  • Gao Z, House LO, Gmitter FG Jr et al (2011) Consumer preferences for fresh citrus: impacts of demographic and behavioral characteristics. Int Food Agribusiness Manag Rev 14:23–40

    Google Scholar 

  • Gassner SA, Hellinger E, Katchalsky A et al (1969) Polyethylene-natural wax emulsions for the coating of fruits and vegetables. US Patent 3,420,790

    Google Scholar 

  • Grierson W, Newhall WF (1960) Degreening of Florida citrus fruits. Bull. Fla. Agric. Exp. Stn 620, 80 pp

    Google Scholar 

  • Hagenmaier RD, Baker RA (1994) Wax microemulsions and emulsions as citrus coatings. J Agric Food Chem 42:899–902

    Article  CAS  Google Scholar 

  • Isaac E (1959) Influence of religion on the spread of citrus. Science 129:179–186‏

    Article  CAS  PubMed  Google Scholar 

  • Kellerman M, Erasmus A, Cronjé, PJ et al (2014) Thiabendazole residue loading in dip, drench and wax coating applications to control green mould and chilling injury on citrus fruit. Postharv Biol Technol 96:78–87

    Article  CAS  Google Scholar 

  • Klein JD (2014) Citron cultivation, production and uses in the Mediterranean region. In: Medicinal and aromatic plants of the Middle-East, Springer, Netherlands,‏ pp 199–214

    Chapter  Google Scholar 

  • Klein JD, Hebbe Y, Shapovalov A et al (2013) Changes in peel color of citron fruits from different genetic origins in response to postharvest copper and gibberellic acid treatments. Acta Hortic 1012:385–390‏

    Article  Google Scholar 

  • Klein JD, Shalev YR, Cohen S et al (2016) Postharvest handling of “Etrog” citron (Citrus medica L.) fruit. Israel J Plant Sci 63:64–75

    Article  Google Scholar 

  • McManus MT (ed) (2012) The plant hormone ethylene. In: Annual plant reviews, vol 44. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Nicolosi E, La Malfa S, El-Otmani M et al (2005) The search for the authentic citron (Citrus medica L.): historic and genetic analysis. HortScience 40:1963–1968

    Article  Google Scholar 

  • Porat R, Daus A, Weiss B et al (2000) Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharv Biol Technol 18:151–157‏

    Article  Google Scholar 

  • Prange RK, DeLong JM (2006) Controlled-atmosphere related disorders of fruits and vegetables. Stewart Postharv Rev 2:1–10

    Google Scholar 

  • Reuther W (ed) (1967) The citrus industry, vol 3326, UCANR Publications

    Google Scholar 

  • Rodov V, Ben-Yehoshua S, Aharoni N et al (2010) Modified humidity packaging of fresh produce. Hortic Rev 37:281–329‏

    Google Scholar 

  • Rodriguez F, Esch JJ, Hall AE et al (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998

    Article  CAS  PubMed  Google Scholar 

  • Shapovalov A (2011) Genetic variability in different varieties of “etrog” citron. Final project for a degree in biotechnology. Amal B Technological Institute

    Google Scholar 

  • Sisler EC, Wood C (1988) Interaction of ethylene and CO2. Physiol Plant 73:440–444‏

    Article  CAS  Google Scholar 

  • Talibi I, Boubaker H, Boudyach EH et al (2014) Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol 117:1–17

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.Y., 1990. Chilling injury of horticultural crops. CRC Press, Boca Raton, FL, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein, J.D., Raz-Shalev, Y., Cohen, S., Fallik, E. (2023). Preserving Etrog Quality After Harvest: Doctrine and Practice. In: Goldschmidt, E.E., Bar-Joseph, M. (eds) The Citron Compendium. Springer, Cham. https://doi.org/10.1007/978-3-031-25775-9_5

Download citation

Publish with us

Policies and ethics