Skip to main content

Intelligent Information Technology for Structural Optimization of Fuzzy Control and Decision-Making Systems

  • Chapter
  • First Online:
Artificial Intelligence in Control and Decision-making Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1087))

Abstract

This chapter is devoted to the development and research of intelligent information technology (IIT) for structural optimization of fuzzy systems (FS) based on the evolutionary search of the optimal membership functions. The proposed IIT uses a combination of different (two or more) bioinspired evolutionary algorithms and allows finding the optimal membership functions of linguistic terms at solving the compromise problems of multi-criteria structural optimization of various FSs to increase their efficiency, as well as to reduce the degree of complexity of further parametric optimization. To study the effectiveness of the considered IIT, the search of the optimal membership functions is conducted for a FS of the multi-purpose mobile robot (MR) designed to move along inclined and vertical ferromagnetic surfaces, with the implementation of three evolutionary algorithms: genetic, artificial immune systems, biogeographic. The analysis of the obtained results showed that the usage of the proposed IIT gives the opportunity to significantly increase the efficiency of the MR control, as well as to reduce the total number of parameters at further parametric optimization of linguistic terms, which confirms its high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh, L. A., Abbasov, A. M., Yager, R. R., Shahbazova, S. N., & Reformat, M. Z. (Eds.). (2014). Recent developments and new directions in soft computing, STUDFUZ 317. Springer.

    Google Scholar 

  2. Jamshidi, M., Kreinovich, V., & Kacprzyk, J. (Eds.). (2013). Advance trends in soft computing. Springer.

    Google Scholar 

  3. Kondratenko,Y. P., Korobko, O. V., & Kozlov, O.V. (2016). Synthesis and optimization of fuzzy controller for thermoacoustic plant. In Zadeh L. A. et al. (Eds.), Recent developments and new direction in soft-computing foundations and applications, studies in fuzziness and soft computing (Vol. 342, pp. 453–467). https://doi.org/10.1007/978-3-319-32229-2_31.

  4. Zadeh, L. A. (1994). The role of fuzzy logic in modeling, identification and control. Modeling Identification and Control, 15(3), 191–203.

    Article  MathSciNet  MATH  Google Scholar 

  5. Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of IEEE, 121, 1585–1588.

    Google Scholar 

  6. Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, 43(11), 1329–1333.

    Google Scholar 

  7. Kondratenko, Y. P., & Kozlov, O. V. (2012). Mathematic modeling of reactor’s temperature mode of multiloop pyrolysis plant. Modeling and Simulation in Engineering, Economics and Management, Lecture Notes in Business Information Processing, 115, 178–187.

    Google Scholar 

  8. Kondratenko, Y. P., Korobko, O. V., Kozlov, O. V. (2012). Frequency tuning algorithm for loudspeaker driven thermoacoustic refrigerator optimization. In K. J. Engemann, A. M. Gil-Lafuente, & J. M. Merigo (Eds.), Lecture notes in business information processing: Modeling and simulation in engineering, economics and management (Vol. 115, 270–279). Springer. https://doi.org/10.1007/978-3-642-30433-0_27.

  9. Kondratenko, Y. P., & Kozlov, O. V. (2016). Mathematical model of ecopyrogenesis reactor with fuzzy parametrical identification. In L. A. Zadeh et al. (Eds.), Recent developments and new direction in soft-computing foundations and applications, studies in fuzziness and soft computing (Vol. 342, pp. 439–451). Springer. https://doi.org/10.1007/978-3-319-32229-2_30.

  10. Kondratenko, Y. P., Kozlov, O. V. & Korobko, O. V. (2018). Two modifications of the automatic rule base synthesis for fuzzy control and decision making systems. In J. Medina et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Foundations, 17th International Conference, IPMU 2018, Cadiz, Spain, Proceedings, Part II, CCIS (Vol. 854, pp. 570–582). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-91476-3_47.

  11. Simon, D. (2013). Evolutionary optimization algorithms: Biologically inspired and population-based approaches to computer intelligence. Wiley.

    MATH  Google Scholar 

  12. Kondratenko, Y., Khalaf, P., Richter, H., & Simon, D. (2019). Fuzzy real-time multi-objective optimization of a prosthesis test robot control system. In Y. P. Kondratenko, A. A. Chikrii, V. F. Gubarev, & J. Kacprzyk (Eds.), Advanced control techniques in complex engineering systems: Theory and applications. dedicated to Professor Vsevolod M. Kuntsevich. Studies in systems, decision and control (Vol. 203, pp. 165–185). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-21927-7_8.

  13. Abbasian, R., & Mouhoub, M. (2011). An efficient hierarchical parallel genetic algorithm for graph coloring problem. In Proceedings of The 13th Annual Conference on Genetic and Evolutionary Computation, ACM, Dublin, Ireland (pp. 521–528).

    Google Scholar 

  14. Zhu, J., Lauri, F., Koukam, A., & Hilaire, V. (2014). Fuzzy logic control optimized by artificial immune system for building thermal condition. In P. Siarry, L. Idoumghar, & J. Lepagnot (Eds.), Swarm intelligence based optimization. ICSIBO 2014. Lecture notes in computer science (vol. 8472, pp. 42–49). Springer.

    Google Scholar 

  15. Melendez, A., & Castillo, O. (2013). Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. In Recent advances on hybrid intelligent systems (pp. 21–31).

    Google Scholar 

  16. Smiley, A, & Simon, D. (2016). Evolutionary optimization of atrial fibrillation diagnostic algorithms. International Journal of Swarm Intelligence, 2(2/3/4), 117–133.

    Google Scholar 

  17. Kondratenko, Y. P., & Kozlov, A. V. (2019). Generation of rule bases of fuzzy systems based on modified ant colony algorithms. Journal of Automation and Information Sciences, 51(3), 4–25; Begel House Inc: https://doi.org/10.1615/JAutomatInfScien.v51.i3.20.

  18. Hampel, R., Wagenknecht, M., & Chaker N. (2000). Fuzzy control: Theory and practice (p. 410). Physika-Verlag .

    Google Scholar 

  19. Sadegheih, A., & Drake, P. R. (2001). Network optimization using linear programming and genetic algorithm, neural network world. Neural Network World, 11(3), 223–233.

    Google Scholar 

  20. Kacprzyk, J. (1997). Multistage fuzzy control: A prescriptive approach. Wiley.

    MATH  Google Scholar 

  21. Kozlov, O., Kondratenko, G., Gomolka, Z., & Kondratenko, Y. (2019). Synthesis and optimization of green fuzzy controllers for the reactors of the specialized pyrolysis plants. In V. Kharchenko, Y. Kondratenko, J. Kacprzyk (Eds.), Green IT engineering: social, business and industrial applications, studies in systems, decision and control (Vol 171, 373–396) Springer. https://doi.org/10.1007/978-3-030-00253-4_16.

  22. Kondratenko, Y. P., & Simon, D. (2018). Structural and parametric optimization of fuzzy control and decision making systems. In L. Zadeh, R. Yager, S. Shahbazova, M. Reformat, & V. Kreinovich (Eds.), Recent developments and the new direction in soft-computing foundations and applications, studies in fuzziness and soft computing (Vol. 361, pp. 273–289). Springer. https://doi.org/10.1007/978-3-319-75408-6_22.

  23. Ovreiu, M., & Simon, D. (2010). Biogeography-based optimization of neuro-fuzzy system parameters for diagnosis of cardiac disease. In Proceedings of Genetic and Evolutionary Computation Conference (pp. 1235–1242).

    Google Scholar 

  24. Nabi, A, & Singh, N. A. (2016). Particle swarm optimization of fuzzy logic controller for voltage sag improvement. In: Proceedings of 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 01, pp. 1–5).

    Google Scholar 

  25. Alves, R. T., Delgado, M. R., Lopes, H. S., & Freitas, A. A. (2004). An artificial immune system for fuzzy-rule induction in data mining. In X. Yao et al. (Eds.), Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science (Vol. 3242, pp. 1011–1020). Springer.

    Google Scholar 

  26. Castillo, O., Ochoa, P., & Soria, J. (2016). Differential evolution with fuzzy logic for dynamic adaptation of parameters in mathematical function optimization. In P. Angelov, S. Sotirov (Eds.), Imprecision and uncertainty in information representation and processing. studies in fuzziness and soft computing (Vol. 332, 361–374). Springer.

    Google Scholar 

  27. Khan, S., et al. (2008). Design and implementation of an optimal fuzzy logic controller using genetic algorithm. Journal of Computer Science, 4(10), 799–806.

    Article  Google Scholar 

  28. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., & Magdalena, L. (2004). Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems, 141(1), 5–31.

    Google Scholar 

  29. Liu, X.-H., Kuai, R., Guan, P., Ye, X.-M., & Wu, Z.-L. (2009). Fuzzy-PID control for arc furnace electrode regulator system based on genetic algorithm. In Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding (pp. 683–689).

    Google Scholar 

  30. Zhao, J., Han, L., Wang, L., & Yu, Z. (2016) The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm. In 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China (pp. 556–559).

    Google Scholar 

  31. Chen, Ch., Li, M., Sui, J., Wei, K., Pei, Q.: A genetic algorithm-optimized fuzzy logic controller to avoid rear-end collisions, Journal of advanced transportation, Vol. 50, 1735-1753 (2016).

    Google Scholar 

  32. Li, H. F., Feng, Z. G, & Wang, J. (2008). GA based design of fuzzy control law for hypersonic vehicle. In 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics (pp. 1–4).

    Google Scholar 

  33. Li, L., Zhu, Q., & Gao, Sh. (2006). Design and realization of waterjet propelled craft autopilot based on fuzzy control and genetic algorithms. In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China (pp. 1362–1366).

    Google Scholar 

  34. Prakash, A., & Deshmukh, S. G. (2011). A multi-criteria customer allocation problem in supply chain environment: An artificial immune system with fuzzy logic controller based approach. Expert Systems with Applications, 38(4), 3199–3208.

    Article  Google Scholar 

  35. Visconti, A., & Tahayori, H. (2011). Artificial immune system based on interval type-2 fuzzy set paradigm. Applied Soft Computing, 11(6), 4055–4063.

    Article  Google Scholar 

  36. Hachicha, N., Jarboui, B., & Siarry, P. (2011). A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics. Information Sciences, 181, 79–91.

    Article  Google Scholar 

  37. Minku, F.L., & Ludermir, T. (2005). Evolutionary strategies and genetic algorithms for dynamic parameter optimization of evolving fuzzy neural networks. In Evolutionary Computation, The 2005 IEEE Congress (Vol. 3, pp. 1951–1958).

    Google Scholar 

  38. Thomas, G., Lozovyy, P., & Simon, D. (2011) Fuzzy robot controller tuning with biogeography-based optimization. In: Modern Approaches in Applied Intelligence: 24th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2011, Syracuse, NY, USA, June 28 – July 1, Proceedings, Part II (pp. 319–327).

    Google Scholar 

  39. Zhang, M., Jiang, W., Zhou, X., et al. (2019). A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft Computing, 23, 2033–2046.

    Article  Google Scholar 

  40. Piegat, A. (2013). Fuzzy modeling and control (Vol. 69). Physica.

    Google Scholar 

  41. Kondratenko, Y. P., & Kondratenko, N. Y. (2015). Soft computing analytic models for increasing efficiency of fuzzy information processing in decision support systems. In: R. Hudson (Ed.), Decision making: processes, behavioral influences and role in business management (pp. 41–78). Nova Science Publishers.

    Google Scholar 

  42. Kondratenko, Y. P., Klymenko, L. P., Al Zu’bi & E. Y. M. (2013). Structural optimization of fuzzy systems’ rules base and aggregation models, kybernetes (Vol. 42, Iss. 5, pp. 831–843). https://doi.org/10.1108/K-03-2013-0053.

  43. Ishibuchi, H., & Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, 141(1), 59–88.

    Article  MathSciNet  MATH  Google Scholar 

  44. Kondratenko, Y., Kondratenko, G., & Sidenko, I. (2018). Multi-criteria decision making for selecting a rational IoT platform. In Proceedings of 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies, DESSERT 2018, Kyiv, Ukraine (pp. 147–152). https://doi.org/10.1109/DESSERT.2018.8409117.

  45. Nazarenko, A. M., & Karpusha, M. V. (2014). Modeling and identification in the problems of multicriteria optimization with linear and quadratic performance criteria under statistical uncertainty. Journal of Automation and Information Sciences, 46(3), 17–29.

    Article  Google Scholar 

  46. Kondratenko, Y. P., & Al Zubi, E. Y. M. (2009). The Optimisation Approach for Increasing Efficiency of Digital Fuzzy Controllers, Annals of DAAAM for 2009 & Proceeding of the 20th International DAAAM Symposium. “Intelligent Manufacturing and Automation”, Published by DAAAM International, Vienna, Austria (pp. 1589–1591).

    Google Scholar 

  47. Kondratenko, Y., Kondratenko, G., & Sidenko, I. (2019). Multi-criteria decision making and soft computing for the selection of specialized IoT platform. In O. Chertov, T. Mylovanov, Y. Kondratenko, J. Kacprzyk, V. Kreinovich, V. Stefanuk (Eds.), Recent Developments in Data Science and Intelligent Analysis of Information. Proceedings of the XVIII International Conference on Data Science and Intelligent Analysis of Information, June 4–7, 2018, Kyiv, Ukraine. ICDSIAI 2018, Advances in Intelligent Systems and Computing (Vol. 836, 71–80). Springer International Publishing. https://doi.org/10.1007/978-3-319-97885-7_8.

  48. Puris, A., Bello, R., Molina, D., & Herrera, F. (2011). Variable mesh optimization for continuous optimization problems. Soft Computing, 16(3), 511–525.

    Article  Google Scholar 

  49. Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1, 355–366.

    Article  Google Scholar 

  50. Li, J., Li, Y., Tian, S., et al. (2020). An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural Computing and Applications, 32, 11967–11997.

    Article  Google Scholar 

  51. Kondratenko, Y., et al. (2021). Inspection mobile robot’s control system with remote IoT-based data transmission. Journal of Mobile Multimedia. Special issue “Mobile Communication and Computing for Internet of Things and Industrial Automation” 17(4), 499–522.

    Google Scholar 

  52. Kozlov, O. (2021). Optimal selection of membership functions types for fuzzy control and decision making systems. In Proceedings of the 2nd International Workshop on Intelligent Information Technologies & Systems of Information Security with CEUR-WS, Khmelnytskyi, Ukraine, IntelITSIS 2021, CEUR-WS (Vol. 2853, pp. 238–247).

    Google Scholar 

  53. Lewis, F. L., Campos, J., & Selmic, R. (2002). Neuro-fuzzy control of industrial systems with actuator nonlinearities. SIAM.

    Book  MATH  Google Scholar 

  54. Duro, R. J., & Kondratenko, Y. P. (Eds.). (2015). Advances in intelligent robotics and collaboration automation. Control and Robotics, River Publishers, Denmark.

    Google Scholar 

  55. Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. Wiley.

    Google Scholar 

  56. Souto, D., Faiña, A., Deibe, A., Lopez-Peña, F., & Duro, R. J. (2012). A robot for the unsupervised grit-blasting of ship hulls. International Journal of Advanced Robotic Systems, 9, 1–16.

    Article  Google Scholar 

  57. Longo, D., & Muscato, G. (2004). A small low-cost low-weight inspection robot with passive-type locomotion. Integrated Computer-Aided Engineering, 11, 339–348.

    Article  Google Scholar 

  58. Xiao, J., Xiao, J., Xi, N., Tummala, R.L., & Mukherjee, R.: Fuzzy controller for wall-climbing microrobots. IEEE Transactions on Fuzzy Systems, 12(4), 466–480.

    Google Scholar 

  59. Elayaraja, D., & Ramabalan, S. (2014). Fuzzy logic control of low cost obstacle climbing robot. Applied Mechanics and Materials, 592–594, 2150–2154.

    Article  Google Scholar 

  60. Churavy, C., Baker, M., Mehta, S., Pradhan, I., Scheidegger, N., Shanfelt, S., Rarick, R., & Simon, D. (2008). Effective implementation of a mapping swarm of robots. IEEE Potentials, 27(4), 28–33.

    Article  Google Scholar 

  61. Kondratenko, Y. P., & Kozlov, A. V. (2019). Parametric optimization of fuzzy control systems based on hybrid particle swarm algorithms with elite strategy. Journal of Automation and Information Sciences, 51(12), 25–45; New York: Begel House Inc. https://doi.org/10.1615/JAutomatInfScien.v51.i12.40.

  62. Li, J., Wang, J. Q., & Hu, J. H. (2019). Multi-criteria decision-making method based on dominance degree and BWM with probabilistic hesitant fuzzy information. International Journal of Machine Learning and Cybernetics, 10, 1671–1685.

    Article  Google Scholar 

  63. Kondratenko, Y. P., Kozlov, O. V., Klymenko, L. P., & Kondratenko, G. V. (2014). Synthesis and research of neuro-fuzzy model of ecopyrogenesis multi-circuit circulatory system. In M. Jamshidi, V. Kreinovich, J. Kazprzyk (Eds.), Advance trends in soft computing. Series: Studies in fuzziness and soft computing (Vol. 312, pp. 1–14). https://doi.org/10.1007/978-3-319-03674-8_1.

  64. Mazandarani, M., & Xiu, L. (2020). Fractional fuzzy inference system: The new generation of fuzzy inference systems. IEEE Access, 8, 126066–126082.

    Article  Google Scholar 

  65. Piwonska, A. (2010). Genetic algorithm finds routes in travelling salesman problem with profits. Zeszyty Naukowe Politechniki Bia lostockiej, Informatyka 51–65.

    Google Scholar 

  66. Sun, X., Wang, J.: Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm. Physica A: Statistical Mechanics and its Applications, 501, 205–216.

    Google Scholar 

  67. Arakaki, R. K., & Usberti, F. L. (2018). Hybrid genetic algorithm for the open capacitated arc routing problem. Computers & Operations Research, 90, 221–231.

    Article  MathSciNet  MATH  Google Scholar 

  68. Ashby, H., & Yampolskiy, R. V. (2011). Genetic algorithm and wisdom of artificial crowds algorithm applied to light up. In Proceedings of 16th International Conference on Computer Games, AI, Animation, Mobile, Interactive Multimedia, Educational & Serious Games, Louisville, KY, USA (pp. 27–30).

    Google Scholar 

  69. Dasgupta, D. (2006). Advances in artificial immune systems. IEEE Computational Intelligence Magazine, 1(4), 40–49.

    Google Scholar 

  70. Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.

    Article  Google Scholar 

  71. Sayed, M. M., Saad, M. S., Emara, H. M., & Abou El-Zahab, E. E. (2013). A novel method for type-2 fuzzy logic controller design using a modified biogeography-based optimization. In 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town (pp. 28–33).

    Google Scholar 

  72. Aseri, N. A. M., Ismail, M. A., Fakharudin, A. S., & Ibrahim, A. O. (2020). Review of the meta-heuristic algorithms for fuzzy modeling in the classification problem. International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 387–400.

    Google Scholar 

  73. Oh, S. K., & Pedrycz, W. (2002). The design of hybrid fuzzy controllers based on genetic algorithms and estimation techniques. Journal of Kybernetes, 31(6), 909–917.

    Article  Google Scholar 

  74. Pedrycz, W., Li, K., & Reformat, M. (2015). Evolutionary reduction of fuzzy rule-based models. In Fifty Years of Fuzzy Logic and its Applications, STUDFUZ 326 (pp. 459–481). Springer.

    Google Scholar 

  75. Nagata, Y., & Soler, D. (2012). A new genetic algorithm for the asymmetric traveling salesman problem. Expert Systems with Applications, 39(10), 8947–8953.

    Article  Google Scholar 

  76. Kuntsevich, V. M. et al. (Eds). Control systems: Theory and applications. Series in automation, control and robotics. River Publishers, Gistrup, Delft.

    Google Scholar 

  77. Kondratenko, Y. P., Kuntsevich, V. M., Chikrii, A. A., & Gubarev, V. F. (Eds.) Advanced control systems: theory and applications. Series in automation, control and robotics. River Publishers: Gistrup. ISBN: 9788770223416.

    Google Scholar 

  78. Topalov, A. et al. (2016). Control processes of floating docks based on SCADA systems with wireless data transmission. In Perspective Technologies and Methods in MEMS Design, MEMSTECH 2016 - Proceedings of 12th International Conference (pp. 57–61). https://doi.org/10.1109/MEMSTECH.2016.7507520.

  79. Kosanam, S., & Simon, D. (2006). Fuzzy membership function optimization for system identification using an extended Kalman filter. Fuzzy Information Processing Society 459–462.

    Google Scholar 

  80. Shill, P. C., Maeda, Y., & Murase, K. (2013). Optimization of fuzzy logic controllers with rule base size reduction using genetic algorithms. In 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA) (pp. 57–64). Singapore.

    Google Scholar 

  81. Gupta, M., Behera, L., & Venkatesh, K. S. (2010). PSO based modeling of Takagi-Sugeno fuzzy motion controller for dynamic object tracking with mobile platform. In International Multiconference Computer Science and Information Technology (IMCSIT) (pp. 37–43).

    Google Scholar 

  82. Safaee, B., & Mashhadi, S. K. M. (2016). Fuzzy membership functions optimization of fuzzy controllers for a quadrotor using particle swarm optimization and genetic algorithm. In Proceedings of 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (pp. 256–261).

    Google Scholar 

  83. Kondratenko, Y., Atamanyuk, I., Sidenko, I., Kondratenko, G., & Sichevskyi, S. (2022). Machine learning techniques for increasing efficiency of the robot’s sensor and control information processing. Sensors, 22, 1062. https://doi.org/10.3390/s22031062.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy V. Kozlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kozlov, O.V., Kondratenko, Y.P., Skakodub, O.S. (2023). Intelligent Information Technology for Structural Optimization of Fuzzy Control and Decision-Making Systems. In: Kondratenko, Y.P., Kreinovich, V., Pedrycz, W., Chikrii, A., Gil-Lafuente, A.M. (eds) Artificial Intelligence in Control and Decision-making Systems. Studies in Computational Intelligence, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-031-25759-9_7

Download citation

Publish with us

Policies and ethics