Skip to main content

Matrix Resolving Functions in Game Dynamic Problems

  • Chapter
  • First Online:
Artificial Intelligence in Control and Decision-making Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1087))

  • 205 Accesses

Abstract

We consider a non-stationary problem of bringing the trajectory of a conflict-controlled process to a given terminal set that varies over time. The basic method for research is the method of resolving functions. While the main scheme of the method uses scalar resolving functions, this paper uses matrix functions of a diagonal form with different elements on the diagonal. This circumstance makes it possible to cover more general game situations. A number of schemes for solving the problem are proposed. Sufficient conditions for the termination of the game in the finite time in the class of quasi and stroboscopic strategies are obtained. The way is indicated for expanding the possibilities and effective application of the method of resolving functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isaacs, R. (1965). Differential games. John Wiley.

    MATH  Google Scholar 

  2. Pontryagin, L. S. (1988). Selected scientific papers (Vol. 2). Nauka.

    Google Scholar 

  3. Pschenichnyi, B. N., & Ostapenko, V. V. (1992). Differential games. Naukova Dumka.

    Google Scholar 

  4. Krasovskii, N. N. (1970). Game problems on the encounter of motions. Nauka.

    MATH  Google Scholar 

  5. Chikrii, A. A. (2013). Conflict-controlled processes. Springer Science and Business Media.

    Google Scholar 

  6. Aubin, J., & Frankowska, H. (1990). Set-valued analysis. Birkhauser.

    Google Scholar 

  7. Locke, A. S. (1955). Guidance. D. Van Nostrand Company.

    Google Scholar 

  8. Siouris, G. M. (2004). Missile guidance and control systems. Springer.

    Google Scholar 

  9. Shouchuan, H. S., & Papageorgion, N. S. (1997). Handbook of multi-valued analysis theory (vol. 1). Springer.

    Google Scholar 

  10. Chikrii, A. A. (2020). Conflict situations involving controlled object Groups. Part.1. Collision avoidance. Journal of Automation and Information Sciences, 52(7), 19–37.

    Google Scholar 

  11. Pontryagin, L. S. (1971). A linear differential evasion game. Trudy MIAN, 112, 30–63. (in Russian).

    MathSciNet  Google Scholar 

  12. Chikrii, A. A. (1976). Linear problem of avoiding several pursuers. Engineering Cybernetics, 14(4), 38–42.

    Google Scholar 

  13. Pschenichnyi, B. N. (1976). Simple pursuit by several objects. Kibernetika, 3, 115–116. (in Russian).

    Google Scholar 

  14. Chikrii, A. A., Matychyn, I., Gromaszek, K., & Smolarc, L. (2011). Control of fractional-order dynamic systems under uncertainty, modelling and optimization (pp. 3–56). Publ. Lublin, Univ. of Technology.

    Google Scholar 

  15. Vlasenko, L. A., Rutkas, A. G., & Chikrii, A. A. (2020). On a differential Game in a stochastic system. Proceedings of the Steklov Institute of Mathematics, 309(1), 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kacprzyk, J. (1997). Multistage fuzzy control: A prescriptive approach. John Wiley & Sons Inc.

    Google Scholar 

  17. Lodwick, W. A., & Kacprzyk, J. (Eds.) (2010). Fuzzy optimization, STUDFUZ 254. Springer.

    Google Scholar 

  18. Hajek, O. (1975). Pursuit games (p. 12). Academic Press.

    MATH  Google Scholar 

  19. Grigorenko, N. L. (1990). Mathematical methods of control of several dynamic processes. Izdat. Mosc. Gos. Univ.

    Google Scholar 

  20. Blagodatskikh, A. I., & Petrov, N. N. (2009). Conflict interaction of groups of controlled objects. Udmurtskiy Universitet.

    Google Scholar 

  21. Chikrii, A. A., & Chikrii, G. T. (2015). Matrix resolving functions in game problems of dynamics. Proceedings of the Steklov Institute of Mathematics, 291, 56–65.

    Article  MathSciNet  MATH  Google Scholar 

  22. Petrov, N. N. (2021). Matrix resolving functions in a linear problem of group pursuit with multiple captures. Trudy Instituta Matematiki i Mekhaniki Ur O RAN, 27(2), 185–196.

    MathSciNet  Google Scholar 

  23. Gantmakher, F. R. (1967). Theory of matrices. Nauka.

    Google Scholar 

  24. Gaishun, I. V. (1999). Introduction into theory of linear non-stationary systems. Institute of Mathematics of NAS of Belarus.

    Google Scholar 

  25. Nikolskii, M. S. (1984). First direct method of L.S. Pontryagin in differential games. Izdat. Mosc. Gos. University.

    Google Scholar 

  26. Nikolskii, M. S. (1992). Stroboscopic strategies and first direct method of L.S. Pontryagin in quasi-linear differential games of pursuit-evasion. Problems of Control and Information Theory, 11(5), 373–377.

    Google Scholar 

  27. Aumann, R. J. (1965). Integrals of set-valued functions. Journal of Mathematical Analysis and Applications, 12, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  28. Natanson, I. P. (1974). Theory of functions of real variable. Nauka.

    Google Scholar 

  29. Joffe, A. D., & Tikhomirov, V. M. (1974). Theory of extreme problems. Nauka.

    Google Scholar 

  30. Chikrii, A. A. (2010). An analytical method in dynamic pursuit games. Proceedings of the Steklov Institute of Mathematics, 271, 69–85.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuntsevich, V. M., et al. (Eds.) (2018). Control systems: Theory and applications. In Automation, control and robotics. River Publishers.

    Google Scholar 

  32. Kondratenko, Y. P., et al. (Eds.) (2021). Advanced control systems: Theory and applications. In Automation, control and robotics. River Publishers.

    Google Scholar 

  33. Kondratenko, Y. P., et al. (Eds.) (2022). Recent developments in control systems. In Automation, control and robotics. River Publishers.

    Google Scholar 

  34. Chikrii, G. Ts. (2021). Principle of time stretching for motion control in condition of conflict. Advanced control systems: Theory and applications. In Automation, control and robotics (pp. 53–82). River Publishers.

    Google Scholar 

  35. Chikrii, G. T. (2009). On one problem of approach for damped oscillations. Journal of Automation and Information Sciences, 41(10), 1–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research Foundation of Ukraine. Grant 2020.02/0121 “Analytic methods and machine learning in control theory and decision making in conditions of conflict and uncertainty”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chikrii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chikrii, A.A., Chikrii, G.T. (2023). Matrix Resolving Functions in Game Dynamic Problems. In: Kondratenko, Y.P., Kreinovich, V., Pedrycz, W., Chikrii, A., Gil-Lafuente, A.M. (eds) Artificial Intelligence in Control and Decision-making Systems. Studies in Computational Intelligence, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-031-25759-9_5

Download citation

Publish with us

Policies and ethics