Skip to main content

Canopy Fire Effects Estimation Using Sentinel-2 Imagery and Deep Learning Approach. A Case Study on the Aspromonte National Park

  • Conference paper
  • First Online:
The Use of Artificial Intelligence for Space Applications (AII 2022)

Abstract

The accurate estimation of fire severity, in terms of physical effects that occurred on the tree’s canopies, as well as the accurate mapping of its spatial distribution, is necessary information to optimally quantify and qualify the damage caused by the fire to ecosystems and address the most correct remedial procedures. The development of even more accurate learning algorithms and higher resolution satellite multispectral data have become essential resources in this framework. This study proposes a deep learning approach, exploiting remotely sensed satellite data, to produce an accurate severity map of the effects caused by the devasting fires affecting the Aspromonte National Park forests during the 2021 fire season. Two multispectral Sentinel-2 data, acquired before and after the fires, were classified using an artificial neural network-based model. All the multispectral fire-sensitive bands (visible, near-infra-red, short-infrared) and the respective temporal difference (post-fire—pre-fire) were involved, while the selection of the training pixels was based on field-based observations. Despite the preliminary nature of this study, the map accuracy reached high values (>95%) of F-scoreM (representing the overall accuracy) already since the first test of this configuration, confirming the validity of this approach. The quanti-qualification of the fire effects reported that 35.26 km2 of forest cover was affected, of which: 41.03% and the 26.04% of tree’s canopies were low and moderately affected respectively; the canopies killed but structurally preserved were the 12.88%; the destroyed trees (very-high severity), instead, were the 20.05%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moreira, F., Ascoli, D., Safford, H., Adams, M.A., Moreno, J.M., Pereira, J.M.C., Catry, F.X., Armesto, J., Bond, W., González, M.E., Curt, T., Koutsias, N., McCaw, L., Price, O., Pausas, J.G., Rigolot, E., Stephens, S., Tavsanoglu, C., Vallejo, V.R., Van Wilgen, B.W., Xanthopoulos, G., Fernandes, P.M.: Wildfire management in Mediterranean-type regions: paradigm change needed. Environ. Res. Lett. 15, 11001 (2020). https://doi.org/10.1088/1748-9326/ab541e

    Article  Google Scholar 

  2. Morresi, D., Vitali, A., Urbinati, C., Garbarino, M.: Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of central Apennines derived from Landsat time series. Remote Sens. 11, (2019). https://doi.org/10.3390/rs11030308

  3. Semeraro, T., Vacchiano, G., Aretano, R., Ascoli, D.: Application of vegetation index time series to value fire effect on primary production in a Southern European rare wetland. Ecol. Eng. 134, 9–17 (2019). https://doi.org/10.1016/j.ecoleng.2019.04.004

    Article  Google Scholar 

  4. Rosa, I.M.D., Pereira, J.M.C., Tarantola, S.: Atmospheric emissions from vegetation fires in Portugal (1990–2008): estimates, uncertainty analysis, and sensitivity analysis. Atmos. Chem. Phys. 11, 2625–2640 (2011). https://doi.org/10.5194/acp-11-2625-2011

    Article  Google Scholar 

  5. De Luis, M., Raventós, J., González-Hidalgo, J.C.: Post-fire vegetation succession in Mediterranean gorse shrublands. Acta Oecol. 30, 54–61 (2006). https://doi.org/10.1016/j.actao.2006.01.005

  6. Mitchell, R.J., Simonson, W., Flegg, L.A., Santos, P., Hall, J.: A comparison of the resilience of four habitats to fire, and the implications of changes in community composition for conservation: a case study from the Serra de Monchique, Portugal. Plant Ecol. Divers. 2, 45–56 (2009). https://doi.org/10.1080/17550870902752421

    Article  Google Scholar 

  7. Montès, N., Ballini, C., Bonin, G., Faures, J.: A comparative study of aboveground biomass of three Mediterranean species in a post-fire succession. Acta Oecol. 25, 1–6 (2004). https://doi.org/10.1016/j.actao.2003.10.002

  8. Riaño, D., Chuvieco, E., Ustin, S., Zomer, R., Dennison, P., Roberts, D., Salas, J.: Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sens. Environ. 79, 60–71 (2002). https://doi.org/10.1016/S0034-4257(01)00239-5

  9. Meng, R., Dennison, P.E., Huang, C., Moritz, M.A., D’Antonio, C.: Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 171, 311–325 (2015). https://doi.org/10.1016/j.rse.2015.10.024

  10. Morresi, D., Marzano, R., Lingua, E., Motta, R., Garbarino, M.: Mapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery. Remote Sens. Environ. 269, 112800 (2022). https://doi.org/10.1016/j.rse.2021.112800

  11. Han, A., Qing, S., Bao, Y., Na, L., Bao, Y., Liu, X., Zhang, J., Wang, C.: Short-term effects of fire severity on vegetation based on Sentinel-2 satellite data. Sustainability 13, 1–22 (2021). https://doi.org/10.3390/su13010432

    Article  Google Scholar 

  12. Saulino, L., Rita, A., Migliozzi, A., Maffei, C., Allevato, E., Garonna, A. Pietro, Saracino, A.: Detecting burn severity across Mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data. Remote Sens. 12, 1–21 (2020). https://doi.org/10.3390/rs12040741

  13. ESA: ESA Sentinel-2 Homepage. https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2

  14. Pereira, J.M.C., Sá, A.C.L., Sousa, A.M.O., Silva, J.M.N., Santos, T.N., Carreiras, J.M.B.: Spectral characterisation and discrimination of burnt areas. In: Remote Sensing of Large Wildfires (1999). https://doi.org/10.1007/978-3-642-60164-4_7

  15. Modica, G., De Luca, G., Messina, G., Praticò, S.: Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery in the framework of precision agriculture. Eur. J. Remote Sens. 54, 431–460 (2021). https://doi.org/inpress

  16. Bot, K., Borges, J.G.: A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision Support (2022). https://doi.org/10.3390/inventions7010015

  17. De Luca, G., Silva, J.M.N., Oom, D., Modica, G.: Combined use of Sentinel-1 and Sentinel-2 for burn severity mapping in a mediterranean region. In: Computational Science and Its Applications–ICCSA 2021. Lecture Notes in Computer Science, pp. 139–154 (2021). https://doi.org/10.1007/978-3-030-87007-2_11

  18. Sali, M., Piaser, E., Boschetti, M., Brivio, P.A., Sona, G., Bordogna, G., Stroppiana, D.: A burned area mapping algorithm for sentinel-2 data based on approximate reasoning and region growing. Remote Sens. 13, (2021). https://doi.org/10.3390/rs13112214

  19. Amos, C., Petropoulos, G.P., Ferentinos, K.P.: Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. Int. J. Remote Sens. 40, 905–930 (2019). https://doi.org/10.1080/01431161.2018.1519284

    Article  Google Scholar 

  20. Key, C.H., Benson, N.C.: Landscape assessment (LA) sampling and analysis methods. In: FIREMON: Fire Effects Monitoring and Inventory System (2006)

    Google Scholar 

  21. Knopp, L., Wieland, M., Rättich, M., Martinis, S.: A deep learning approach for burned area segmentation with Sentinel-2 data. Remote Sens. 12, (2020). https://doi.org/10.3390/RS12152422

  22. Hu, X., Ban, Y., Nascetti, A.: Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning (2021). https://doi.org/10.3390/rs13081509

  23. Monaco, S., Pasini, A., Apiletti, D., Colomba, L., Garza, P., Baralis, E.: Improving wildfire severity classification of deep learning U-nets from satellite images. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5786–5788 (2020). https://doi.org/10.1109/BigData50022.2020.9377867

  24. Farasin, A., Colomba, L., Garza, P.: Double-Step U-Net: A Deep Learning-Based Approach for the Estimation of Wildfire Damage Severity through Sentinel-2 Satellite Data (2020). https://doi.org/10.3390/app10124332

  25. Keras Homepage: Keras Homepage. https://keras.io/

  26. Spampinato, G., Cameriere, P., Caridi, D., Crisafulli, A.: Carta della vegetazione reale del Parco Nazionale dell’Aspromonte (2002)

    Google Scholar 

  27. Aspromonte Park: Aspromonte Park. http://www.parconazionaleaspromonte.it/pagina.php?id=41

  28. Spampinato, G.: Guida alla flora dell’Aspromonte. Laruffa Editore (2014)

    Google Scholar 

  29. Copernicus Access Hub: Copernicus Access Hub. https://scihub.copernicus.eu/

  30. Google Earth: Google Earth. https://earth.google.com/web/

  31. SHAP: SHAP KernelExplainer Doc. https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html

  32. Moreno, J.M., Morales-Molino, C., Torres, I., Arianoutsou, M.: Fire in Mediterranean Pine Forests: Past, Present and Future BT-Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin (2021). https://doi.org/10.1007/978-3-030-63625-8_21

  33. Fernández-Manso, A., Quintano, C., Suarez-Seoane, S., Marcos, E., Calvo, L.: Remote Sensing Techniques For Monitoring Fire Damage And Recovery of Mediterranean Pine Forests: Pinus Pinaster and Pinus Halepensis as Case Studies BT-Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin (2021). https://doi.org/10.1007/978-3-030-63625-8_27

  34. Pereira-Pires, J.E., Aubard, V., Ribeiro, R.A., Fonseca, J.M., Silva, J.M.N., Mora, A.: Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network (2020). https://doi.org/10.3390/rs12060909

  35. Quintano, C., Fernández-Manso, A., Roberts, D.A.: Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 136, 76–88 (2013). https://doi.org/10.1016/j.rse.2013.04.017

    Article  Google Scholar 

  36. Smith, A.M.S., Lentile, L.B., Hudak, A.T., Morgan, P.: Evaluation of linear spectral unmixing and ∆NBR for predicting post-fire recovery in a North American ponderosa pine forest. Int. J. Remote Sens. 28, 5159–5166 (2007). https://doi.org/10.1080/01431160701395161

    Article  Google Scholar 

  37. Fernandez-Manso, A., Quintano, C., Roberts, D.A.: Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ. 184, 112–123 (2016). https://doi.org/10.1016/j.rse.2016.06.015

  38. Rogan, J., Franklin, J.: Mapping wildfire burn severity in southern california forests and shrublands using enhanced thematic mapper imagery. Geocarto Int. 16, 91–106 (2001). https://doi.org/10.1080/10106040108542218

    Article  Google Scholar 

  39. De Santis, A., Chuvieco, E.: Burn severity estimation from remotely sensed data: performance of simulation versus empirical models. Remote Sens. Environ. 108, 422–435 (2007). https://doi.org/10.1016/j.rse.2006.11.022

    Article  Google Scholar 

  40. García-Llamas, P., Suárez-Seoane, S., Fernández-Guisuraga, J.M., Fernández-García, V., Fernández-Manso, A., Quintano, C., Taboada, A., Marcos, E., Calvo, L.: Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 80, 137–144 (2019). https://doi.org/10.1016/j.jag.2019.04.006

  41. Fernández-Manso, A., Fernández-Manso, O., Quintano, C.: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. (2016). https://doi.org/10.1016/j.jag.2016.03.005

    Article  Google Scholar 

  42. Filipponi, F.: BAIS2: burned area index for Sentinel-2. In: Proceedings, p. 5177 (2018). https://doi.org/10.3390/ecrs-2-05177

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giandomenico De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Luca, G., Modica, G. (2023). Canopy Fire Effects Estimation Using Sentinel-2 Imagery and Deep Learning Approach. A Case Study on the Aspromonte National Park. In: Ieracitano, C., Mammone, N., Di Clemente, M., Mahmud, M., Furfaro, R., Morabito, F.C. (eds) The Use of Artificial Intelligence for Space Applications. AII 2022. Studies in Computational Intelligence, vol 1088. Springer, Cham. https://doi.org/10.1007/978-3-031-25755-1_27

Download citation

Publish with us

Policies and ethics