Skip to main content

Modeling and Simulation of Phytoremediation Technology by Artificial Neural Network

  • Chapter
  • First Online:
Advanced Technology for Smart Environment and Energy

Abstract

Nowadays, Constructed wetland (CW) technologies present an advantageous alternative system for wastewater treatment. However, there is not an effective model admitted to providing an implement for forecasting their performances. In this study, the neural network model was applied to predict the effluent physicochemical parameters and total coliforms and fecal streptococci in a hybrid constructed wetland plant (HCW) processing domestic wastewater. The Tidili treatment plant was made up of three parallel vertical flow beds (VF), followed by two horizontal flow beds (HF) working in parallel, with Phragmites australis as the vegetation. The Tidili treatment plant was controlled every 15 days for 2 years. Sampling was taken at the tank inlet, and at both the VF and HF outlets. The Sigmoidal activation functions with a Feed-Forward Back-Propagation were used to foretell the removal rates of pollutants from domestic wastewater. The main removal percentages of physicochemical parameters were 94% of TSS, 92% of BOD5, 90% of COD, 66% of TN and 63% of TP. HCWs showed a high capacity to eliminate coliforms (4.44 Log units total coliforms, 4.30 Log units fecal coliforms) and fecal streptococci (4.08 Log units). Artificial neural networks (ANNs) was calibrated and validated based on the physicochemical parameters (TSS, BOD5, COD) and microbiological parameters (TC, FS). The model indicated that the simulated values of physicochemical parameters and microbiological parameters were in close coordination with their target values. Thus, ANN model was found to be a useful implement to forecast the examined performances using HCWs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

    Google Scholar 

  • Avellan CT, Ardakanian R, Gremillion P (2017) The role of constructed wetlands for biomass production within the water-soil-waste nexus. Water Sci Technol 75(10):2237–2245

    Article  CAS  Google Scholar 

  • Elfanssi S, Ouazzani N, Latrach L, Hejjaj A, Mandi L (2018) Phytoremediation of domestic wastewater using a hybrid constructed wetlands in mountainous rural area. Inter J Phyto 20(1):75–87

    Article  CAS  Google Scholar 

  • Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22

    Article  Google Scholar 

  • Matamoros V, Bayona JM (2008) Behavior of emerging pollutants in constructed wetlands. In: Barceló D, Petrovic M (eds) Emerging contaminants from industrial and municipal waste. The handbook of environmental chemistry, vol 5/5S/5S/2. Springer, Berlin, Heidelberg

    Google Scholar 

  • Moroccan Standards (2006) Moroccan standard approved by order of the minister of industry, trade and economy last level. Moroccan Industrial Standardization Service

    Google Scholar 

  • Ranieri E, Gikas P, Tchobanoglous G (2013) BTEX removal in pilot-scale horizontal subsurface flow constructed wetlands. Desalin Water Treat 51:3032–3039

    Article  CAS  Google Scholar 

  • Rizzo A, Tondera K, Pálfy TG, Dittmer U, Meyer D, Schreiber C, Zacharias N, Ruppelt JP, Esser D, Molle P, Troesch S, Masia F (2020) Constructed wetlands for combined sewer overflow treatment: a state-of-the-art review. Sci Total Environ 727

    Google Scholar 

  • Senzia M, Mashauri DA, Mayo AW (2003) Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment: nitrogen transformation and removal. Phys Chem Earth, Parts a/b/c 28:1117–1124

    Article  Google Scholar 

  • Vijayan A, Mohan GS (2016) Prediction of effluent treatment plant performance in a diary industry using artificial neural network technique. J Civil Environ Eng 6:6. https://doi.org/10.4172/2165-784X.1000254

    Article  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. J Environ Sci Technol 45(1):61–69

    Article  CAS  Google Scholar 

  • Zidan AA, Rashed AA, Hatata AY, Abd El-Hady MA (2015) Artificial neural networks to predict wastewater treatment in different media hssf constructed wetlands. In: J eighteenth international water technology conference (IWTC18)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Centre for Studies and Research on Water and Energy (CNEREE), University of Cadi Ayyad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saloua Elfanssi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elfanssi, S., Mabrouki, J., Oumlouki, K.E., Ghizlane Fattah, Mandi, L. (2023). Modeling and Simulation of Phytoremediation Technology by Artificial Neural Network. In: Mabrouki, J., Mourade, A., Irshad , A., Chaudhry, S. (eds) Advanced Technology for Smart Environment and Energy. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-25662-2_7

Download citation

Publish with us

Policies and ethics