Skip to main content

Isoperimetric Inequalities and Amenability

  • Chapter
  • First Online:
Random Walks on Infinite Groups

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 297))

  • 1127 Accesses

Abstract

As we have seen, for every symmetric random walk on a finitely generated group the probability of return to the initial point after 2n steps decays roughly like ϱ 2n, where ϱ ≤ 1 is the so-called spectral radius of the walk. When is it the case that this exponential rate ϱ is strictly less than 1? Kesten [77] discovered that the answer depends on a fundamental structural feature of the ambient group: amenability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roger C. Alperin. PSL2(Z)=Z2*Z3. Amer. Math. Monthly, 100(8):385–386, 1993.

    MathSciNet  Google Scholar 

  2. Laurent Bartholdi, Serge Cantat, Tullio Ceccherini-Silberstein, and Pierre de la Harpe. Estimates for simple random walks on fundamental groups of surfaces. Colloq. Math., 72(1):173–193, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  3. Sébastien Blachère, Peter Haïssinsky, and Pierre Mathieu. Asymptotic entropy and Green speed for random walks on countable groups. Ann. Probab., 36(3):1134–1152, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  4. Elisabetta Candellero and Lorenz A. Gilch. Phase transitions for random walk asymptotics on free products of groups. Random Structures Algorithms, 40(2):150–181, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  5. Donald I. Cartwright. Some examples of random walks on free products of discrete groups. Ann. Mat. Pura Appl. (4), 151:1–15, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  6. Thierry Coulhon. Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141(2):510–539, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  7. Thierry Coulhon and Laurent Saloff-Coste. Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana, 9(2):293–314, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahlon Marsh Day. Convolutions, means, and spectra. Illinois J. Math., 8:100–111, 1964.

    Google Scholar 

  9. Erling Følner. On groups with full Banach mean value. Math. Scand., 3:243–254, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  10. Peter Gerl and Wolfgang Woess. Local limits and harmonic functions for nonisotropic random walks on free groups. Probab. Theory Relat. Fields, 71(3):341–355, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  11. Sébastien Gouëzel. Local limit theorem for symmetric random walks in Gromov-hyperbolic groups. J. Amer. Math. Soc., 27(3):893–928, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sébastien Gouezel. A numerical lower bound for the spectral radius of random walks on surface groups. Combin. Probab. Comput., 24(6):838–856, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sébastien Gouëzel and Steven P. Lalley. Random walks on co-compact Fuchsian groups. Ann. Sci. Éc. Norm. Supér. (4), 46(1):129–173 (2013), 2013.

    MathSciNet  MATH  Google Scholar 

  14. Harry Kesten. Full Banach mean values on countable groups. Math. Scand., 7:146–156, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  15. Harry Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336–354, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  16. Steven P. Lalley. Finite range random walk on free groups and homogeneous trees. Ann. Probab., 21(4):2087–2130, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  17. Steven P. Lalley. Random walks on regular languages and algebraic systems of generating functions. In Algebraic methods in statistics and probability (Notre Dame, IN, 2000), volume 287 of Contemp. Math., pages 201–230. Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  18. Russell Lyons and Yuval Peres. Probability on Trees and Networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016.

    Google Scholar 

  19. Bojan Mohar and Wolfgang Woess. A survey on spectra of infinite graphs. Bull. London Math. Soc., 21(3):209–234, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Morris and Yuval Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields, 133(2):245–266, 2005.

    Google Scholar 

  21. Tat’yana Nagnibeda. An upper bound for the spectral radius of a random walk on surface groups. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 240(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2):154–165, 293–294, 1997.

    Google Scholar 

  22. J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  23. Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.

    Google Scholar 

  24. Christophe Pittet and Laurent Saloff-Coste. A survey on the relationships between volume growth, isoperimetry, and the behavior of simple random walk on cayley graphs, with examples. 2001,unpublished.

    Google Scholar 

  25. N. Th. Varopoulos. Convolution powers on locally compact groups. Bull. Sci. Math. (2), 111(4):333–342, 1987.

    MathSciNet  MATH  Google Scholar 

  26. Nicholas Th. Varopoulos. Chaînes de Markov et inégalités isopérimétriques. C. R. Acad. Sci. Paris Sér. I Math., 298(18):465–468, 1984.

    Google Scholar 

  27. Wolfgang Woess. A local limit theorem for random walks on certain discrete groups. In Probability measures on groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Math., pages 467–477. Springer, Berlin, 1982.

    Google Scholar 

  28. Wolfgang Woess. Random Walks on Infinite Graphs and Groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.

    Book  Google Scholar 

  29. Andrzej Żuk. A remark on the norm of a random walk on surface groups. Colloq. Math., 72(1):195–206, 1997.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lalley, S. (2023). Isoperimetric Inequalities and Amenability. In: Random Walks on Infinite Groups. Graduate Texts in Mathematics, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-031-25632-5_5

Download citation

Publish with us

Policies and ethics