Skip to main content

Sodium-Glucose Cotransporter 2 Inhibitors

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Sodium-glucose cotransporter 2 inhibitors are the latest medications to be approved and released for treatment of patients with type 2 diabetes. These include canagliflozin, dapagliflozin, and empagliflozin. Their mechanism of action is characterized by permissive glucosuria, which has significant effects on lowering HbA1c by up to 1%. These drugs are also beneficial for blood pressure control mainly due to its diuretic-like effects as well as weight loss secondary to caloric loss via glucosuria. Most impressive to these medications are the marked potential benefits observed in cardiovascular and renal outcomes noted with empagliflozin but yet to be assessed with canagliflozin and dapagliflozin. The use of these medications has introduced to the scientific and medical world the concept of ketones as a superfuel as well. Sodium-glucose cotransporter 2 inhibitors are promising drugs to the diabetic community, and the use of these has continued to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghezzi C, Loo DD, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia. 2018;61:2087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mudaliar S, Polidori D, Zambrowicz B, Henry R. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport. Diabetes Care. 2015;38:2344–53.

    Article  CAS  PubMed  Google Scholar 

  3. Gronda E, Jessup M, Iacoviello M, Palazzuoli A, Napoli C. Glucose metabolism in the kidney: neurohumoral activation and heart failure development. J Am Heart Assoc. 2020;9:e018889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Koninck L. Ueber das phlorizin (phlorrizin). Annalen der Pharmacie. 1835;15:75–7.

    Article  Google Scholar 

  5. Leslie BR, Gerwin LE, Taylor SI. Sodium-glucose cotransporter-2 inhibitors: lack of a complete history delays diagnosis. Ann Intern Med. 2019;171:421–6.

    Article  PubMed  Google Scholar 

  6. Elsas LJ, Rosenberg LE. Familial renal glycosuria: a genetic appraisal of hexose transport by kidney and intestine. J Clin Invest. 1969;48:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Calado J, Soto K, Clemente C, Correia P, Rueff J. Gene symbol: SLC55A2. Disease: familial renal glucosuria. Hum Genet. 2004;115:170.

    CAS  PubMed  Google Scholar 

  8. Hjärne V. A study of orthoglycaemic glycosuria with particular reference to its hereditability. Acta Med Scand. 1927;67:422–5.

    Article  Google Scholar 

  9. Brown MS, Poleshuck R. Familial renal glycosuria. J Lab Clin Med. 1935;20:605–10.

    Google Scholar 

  10. Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose transporter 2 (SGLT-2) inhibitor for the treatment of type 2 diabetes. J Med Chem. 2008;51:1145–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nomura S, Sakamaki S, Hongu M, Kawanishi E, Koga Y, Sakamoto T, et al. Discovery of canagliflozin, a novel C-glucoside with thiopene ring, as sodium-depedent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem. 2010;53:6355–60.

    Article  CAS  PubMed  Google Scholar 

  12. Katz PM, Leiter LA. The role of the kidney and SGLT inhibitors in type 2 diabetes. Can J Diabetes. 2015;39:S167–75.

    Article  PubMed  Google Scholar 

  13. Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019;21(Suppl 2):9–18.

    Article  CAS  PubMed  Google Scholar 

  14. Simes BC, MacGregor GG. Sodium-glucose cotransporter-2 (SGLT2) inhibitors: a clinician’s guide. Diabetes Metab Syndr Obes. 2019;12:2125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGill JB, Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardiol. 2019;124:S45–52.

    Article  CAS  PubMed  Google Scholar 

  16. Augusto GA, Cassola N, Dualib PM, Saconato H, Melnik T. Sodium-glucose cotransporter-2 inhibitors for type 2 diabetes mellitus in adults: an overview of 46 systematic reviews. Diabetes Obes Metab. 2021;23:2289–302.

    Article  CAS  PubMed  Google Scholar 

  17. Brown E, Wilding JP, Alam U, Barber TM, Karalliede J, Cuthbertson DJ. The expending role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann Med. 2021;53:2072–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giugliano D, Longo M, Caruso P, Malorino MI, Bellastella G, Esposito K. Sodium-glucose co-transporter-2 inhibitors for the prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis. Diabetes Obes Metab. 2021;23:1672–6.

    Article  CAS  PubMed  Google Scholar 

  19. Verma S. Potential mechanism of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits. Am J Cardiol. 2019;124:S36–44.

    Article  CAS  PubMed  Google Scholar 

  20. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes. A meta-analysis. JAMA Cardiol. 2021;6:148–58.

    Article  PubMed  Google Scholar 

  21. Kaneto H, Obata A, Kimura T, Shimoda M, Kinoshita T, Matsuoka T, et al. Unexpected pleiotropic effects of SGLT2 inhibitors: pearls and pitfalls of this novel antidiabetic class. Int J Mol Sci. 2021;22:3062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, et al. A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17:984–93.

    Article  CAS  PubMed  Google Scholar 

  23. Sakai S, Kaku K, Seino Y, Inagaki N, Haneda M, Sasaki T, et al. Efficacy and safety of the SGLT2 inhibitor Luseogliflozin in Japanese patients with type 2 diabetes mellitus stratified according to baseline body mass index: pooled analysis of data from 52-week phase trials. Clin Ther. 2016;38:843–62.

    Article  CAS  PubMed  Google Scholar 

  24. Halvorsen Y-D, Walford G, Thurber T, Russell H, Massaro M, Freeman MW. A 12-week, randomized, double-blind, placebo-controlled, dour-arm dose-finding phase 2 study evaluating bexagliflozin as monotherapy for adults with type 2 diabetes. Diabetes Obes Metab. 2019;22:566–73.

    Article  PubMed  Google Scholar 

  25. Avgerinos I, Karagiannis T, Kakotrichi P, Michailidis T, Liakos A, Mathews DR, et al. Sotagliflozin for patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2021;24:106–14.

    Article  PubMed  Google Scholar 

  26. Mohan V, Mithal A, Joshi SR, Aravind SR, Chowdhuri S. Remoglifozin etabonate in the treatment of type 2 diabetes: design, development, and place in therapy. Drug Des Devel Ther. 2020;14:2487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aikabbani W, Gamble J-M. Profile of Ipragliflozin, an Oral SGLT-2 inhibitor for the treatment of type 2 diabetes: the evidence to date. Drug Des Devel Ther. 2021;15:3057–69.

    Article  Google Scholar 

  28. Dadeech N, Srivastava A, Paranjape N, Gupta S, Dave A, Shah GM, et al. Swertisin and antidiabetic compound facilitate islet neogenesis from pancreatic stem/progenitor cells via P-38 MAP-kinase SMAD pathway: an in-vitro and in-vivo study. PLoS One. 2021;10:e0128244. https://doi.org/10.1371/journal.pone.0128244.

    Article  CAS  Google Scholar 

  29. Bhardwaj G, Vakani M, Srivastava A, Patel D, Pappachan A, Murumkar P, et al. Swertisin, a novel SGLT2 inhibitor, with improved glucose homeostasis for effective diabetes therapy. Arch Biochem Biophys. 2021;710:108995.

    Article  CAS  PubMed  Google Scholar 

  30. Argento NB, Nakamura K. Glycemic effects of SGLT-2 inhibitor canagliflozin in type 1 diabetic patients using the DexCom G4 platinum CGM. Endocr Pract. 2016;22(3):315–22. https://doi.org/10.4158/EP151016.OR.

    Article  PubMed  Google Scholar 

  31. Plodkowski RA, McGarvey ME, Huribal HM, Reisinger-Kindle K, Kramer B, Solomon M, et al. SGLT-2 inhibitors for the treatment of type 2 diabetes mellitus. Fed Pract. 2015;32(Suppl. 11):10S–7S.

    Google Scholar 

  32. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghosh A, Vaccaro N, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36:2154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56:2582–92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leiter LA, Yoon KH, Arias P, Langslet G, Xie J, Balis DA, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38:355–64.

    Article  CAS  PubMed  Google Scholar 

  35. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, et al. CANVAS Trial Collaborative Group. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38:403–11.

    Article  CAS  PubMed  Google Scholar 

  36. Ando Y, Shigiyama F, Hirose T, Kumashiro N. Simplification of complex insulin regimens using canagliflozin or liraglutide in patients with well-controlled type 2 diabetes: a 24-week randomized controlled trial. J Diabetes Investig. 2021;12:1816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yale JF, Bakris G, Cariou B, Nieto J, David-Neto E, Yue D, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16:1016–27.

    Article  CAS  PubMed  Google Scholar 

  38. List JF, Woo V, Morales E, Tang W, Fierdorek F. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32:650–7.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenstock J, Hansen L, Zee P, Li Y, Cook W, Hirshberg B, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care. 2015;38(3):376–83. https://doi.org/10.2337/dc14-1142.

    Article  CAS  PubMed  Google Scholar 

  40. Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin. Diabetes Care. 2011;34:2015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Müller-Wieland D, Kellerer M, Cyprik K, Skripova D, Rohwedder K, Johnsson E, et al. Efficacy and safety of dapagliflozin or dapagliflozin plus saxagliptin versus glimepiride as add-on to metformin in patients with type 2 diabetes. Diabetes Obes Metab. 2018;20:2598–607.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2:691–700.

    Article  PubMed  Google Scholar 

  43. Ridderstrale M, Rosenstock J, Andersen KR, Woerle HJ, Salsali A. Empagliflozin compared with glimepiride in metformin-treated patients with type 2 diabetes: 208-week data from a masked randomized controlled trial. Diabetes Obes Metab. 2018;20:2768–77.

    Article  CAS  PubMed  Google Scholar 

  44. Søfteland E, Meier JJ, Vangen B, Toorawa R, Maldonado-Lutomirsky M, Broedl UC. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care. 2017;40:201–9.

    Article  PubMed  Google Scholar 

  45. Ferrannini EI, Berk A, Hantel S, Pinnetti S, Hach T, Woerle HJ, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36:4015–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovacs CS, Seshiah V, Merker L, Christiansen AV, Roux F, Salsali A, et al. Empagliflozin as add-on therapy to pioglitazone with or without metformin in patients with type 2 diabetes mellitus. Clin Ther. 2015;37:1773–88.

    Article  CAS  PubMed  Google Scholar 

  47. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17:936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37:1815–23.

    Article  CAS  PubMed  Google Scholar 

  49. Rodbard HW, Rosenstock J, Canani LH, Deerochanawong C, Gumprecht J, Ostergaard Lindberg S, et al. Oral Semaglutide versus Empagliflozin in patients with type 2 diabetes uncontrolled on metformin: the Pioneer 2 trail. Diabetes Care. 2019;42:2272–81.

    Article  CAS  PubMed  Google Scholar 

  50. Lingvay I, Capehorn MS, Catarig A-M, Johansen P, Lawson J, Sandberg A, et al. Efficacy on once-weekly Semaglutide vs Empagliflozin added to metformin in type 2 diabetes: patient-level meta-analysis. J Clin Endocrinol Metab. 2020;105:e4593–604.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–94. https://doi.org/10.1111/dom.12670.

    Article  CAS  PubMed  Google Scholar 

  53. Zinman B, Wanner C, Lachin J, Fitchett D, et al. Empagliflozin, cardiovascular outcones and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–27.

    Article  CAS  PubMed  Google Scholar 

  54. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93. https://doi.org/10.1111/dom.12572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sattar N, McLaren J, Fristen SL, Preiss D, McMurray JJ. SGLT2 inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what are the likely mechanisms? Diabetologia. 2016;59:1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  PubMed  Google Scholar 

  57. Wiviott SD, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    Article  CAS  PubMed  Google Scholar 

  58. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with Ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35.

    Article  CAS  PubMed  Google Scholar 

  59. Wanner C, Inzucchi S, Lachin J, Fitchett D, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:1801–12.

    Article  PubMed  Google Scholar 

  60. Dagogo-Jack S, Pratley RE, Cherney DZI, McGuire DK, Cosentino F, Shih W, et al. Glycemic efficacy and safety of the SGLT2 inhibitor ertugliflozin in patients with type 2 diabetes and stage 3 chronic disease: an analysis from the VERTIS CV randomized trial. BMJ Open Diabetes Res Care. 2021;9:e002484.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tang H, Li D, Zhang J, Li Y, Wang T, Zhai S. Sodium-glucose transporter-2 inhibitors and risk of adverse renal outcomes in patients with type 2 diabetes: a network meta-analysis of randomized control trials. Diabetes Obes Metab. 2017;19:142–7.

    Article  CAS  PubMed  Google Scholar 

  62. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  CAS  PubMed  Google Scholar 

  63. Brown E, Wilding JPH, Alam U, Barber TM, Karalliedde J, Cuthbertson DJ. The expending role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann Med. 2020;53:2072–89.

    Article  Google Scholar 

  64. Rhee JJ, Jardine MJ, Chertow GM, Mahaffey KW. Dedicated kidney disease-focused outcome trials with sodium-glucose cotransporter-2 inhibitors: lessons from CREDENCE and expectations from DAPA-HF, DAPA-CKD, and EMPA-KIDNEY. Diabetes Obes Metab. 2020;22(suppl 1):46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14. https://doi.org/10.2337/dc16-0330.

    Article  PubMed  Google Scholar 

  66. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22. https://doi.org/10.2337/dc16-0542.

    Article  CAS  PubMed  Google Scholar 

  67. Lega IC, Bronskill SE, Campitelli MA, Guan J, Stall NM, Lam K, et al. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: a population-based study of older women and men with diabetes. Diabetes Obes Metab. 2019;21:2394–404.

    Article  CAS  PubMed  Google Scholar 

  68. Chandrashekar M, Philip S, Nesbit A, Joshi A, Perera M. Sodium glucose-linked transport protein 2 inhibitors: an overview of genitourinary and perioperative implications. Int J Urol. 2021;28:984–90.

    Article  CAS  PubMed  Google Scholar 

  69. Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH. Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors. A review of spontaneous postmarketing cases. Ann Intern Med. 2019;170:764–9.

    Article  PubMed  Google Scholar 

  70. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dailey, G., Rodriguez-Saldana, J. (2023). Sodium-Glucose Cotransporter 2 Inhibitors. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics