Skip to main content

Cyber-Physical Systems Security: Analysis, Opportunities, Challenges, and Future Prospects

  • Chapter
  • First Online:
Blockchain for Cybersecurity in Cyber-Physical Systems

Abstract

Cyber-Physical Systems (CPS) is an emerging technology closely related to the Internet of Things (IoT) schemes, but CPS centers on the occurrence of computation processes, networking, and physical layers. The CPS involves many interconnected systems that can manipulate and monitor the operations of real objects. The evolution of CPS has significantly affected several aspects of the public’s way of life, thereby permitting the integration of different applications and services like smart homes, smart healthcare systems, electronic commerce, and smart campuses, among others. But their creation has posed security challenges for people in the world of an interconnected system and given rise to dangerous security problems. One of CPS’s most complex issues is ensuring information security against cyber-attacks. These problems have attracted significant attention from both industries and many researchers. Therefore, this chapter reviews CPS security vulnerabilities, attacks, and threats in securing information on the internet by identifying the key challenges and issues. The limitations of existing security measures are analyzed and presented, and their effects on the features of people’s lives are explored. The CPS principal types of security threats and attacks are presented and analyzed. Finally, the challenges of CPS, possible solutions, and areas for future research are discussed. In this field, cybersecurity has become a global issue, so the design of stable, healthy, and effective CPS is a popular area of study.

Security challenges are not new, but technological innovations make it possible to develop new methods to secure data from detrimental effects. Novel threats will remain exploited, and cyber-attacks will continue to occur, resulting in the need for new CPS security methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control technology, 12(1), 161–166.

    Google Scholar 

  2. Jazdi, N. (2014, May). Cyber-physical systems in the context of Industry 4.0. In 2014 IEEE international conference on automation, quality, and testing, robotics (pp. 1–4). IEEE.

    Google Scholar 

  3. Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212–223.

    Google Scholar 

  4. Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661.

    Google Scholar 

  5. Zeadally, S., & Jabeur, N. (2016). Cyber-physical system design with sensor networking technologies. The Institution of Engineering and Technology.

    Google Scholar 

  6. Bamimore I. & Ajagbe S. A., (2020) Design and implementation of smart home for security using Radio Frequency modules, International Journal of Digital Signals and Smart Systems (Inderscience Journal) Vol.4, Issue 4, Pp 286–303

    Google Scholar 

  7. Liu, C. H., & Zhang, Y. (Eds.). (2015). Cyber-physical systems: architectures, protocols, and applications (Vol. 22). CRC Press.

    Google Scholar 

  8. Affum, E. A., Ajagbe, S. A., Boateng, K. A., Adigun, M. O., (2022), Response Analysis of Varied Q-Power Values of Cosine Distribution in Spatial Correlation, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 2022, pp. 2070–2071, https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887202.

  9. Li, N., Chen, L., & Low, S. H. (2011, July). Optimal demand response based on utility maximization in power networks. In 2011 IEEE power and energy society general meeting (pp. 1–8). IEEE.

    Google Scholar 

  10. Deng, R., Chen, J., Cao, X., Zhang, Y., Maharjan, S., & Gjessing, S. (2013). Sensing-performance tradeoff in cognitive radio enabled smart grid. IEEE Transactions on Smart Grid, 4(1), 302–310.

    Google Scholar 

  11. Calhoun, B. H., Lach, J., Stankovic, J., Wentzloff, D. D., Whitehouse, K., Barth, A. T., ... & Zhang, Y. (2011). Body sensor networks: A holistic approach from silicon to users. Proceedings of the IEEE, 100(1), 91–106.

    Google Scholar 

  12. Guan, X., Yang, B., Chen, C., Dai, W., & Wang, Y. (2016). A comprehensive overview of cyber-physical systems: From perspective of feedback system. IEEE/CAA Journal of Automatica Sinica, 3(1), 1–14.

    Google Scholar 

  13. Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., & Achiche, S. (2016). Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry, 82, 273–289.

    Google Scholar 

  14. Hatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I., & Demetriou, G. (2018). The industrial internet of things as an enabler for a circular economy Hy-LP: a Novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Computer communications, 119, 127–137.

    Google Scholar 

  15. Basir, R., Qaisar, S., Ali, M., Aldwairi, M., Ashraf, M. I., Mahmood, A., & Gidlund, M. (2019). Fog computing enabling industrial internet of things: State-of-the-art and research challenges. Sensors, 19(21), 4807.

    Google Scholar 

  16. Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of medical systems, 42(4), 1–13.

    Google Scholar 

  17. Penas, O., Plateaux, R., Patalano, S., & Hammadi, M. (2017). Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Computers in Industry, 86, 52–69.

    Google Scholar 

  18. Nikolakis, N., Maratos, V., & Makris, S. (2019). A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robotics and Computer-Integrated Manufacturing, 56, 233–243.

    Google Scholar 

  19. Hahn, A., Thomas, R. K., Lozano, I., & Cardenas, A. (2015). A multi-layered and kill-chain based security analysis framework for cyber-physical systems. International Journal of Critical Infrastructure Protection, 11, 39–50.

    Google Scholar 

  20. Krotofil, M., & Larsen, J. (2014, August). Are you threatening my hazards?. In International Workshop on Security (pp. 17–32). Springer, Cham.

    Google Scholar 

  21. Jiang, Y., Yin, S., & Kaynak, O. (2018). Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE Access, 6, 47374–47384.

    Google Scholar 

  22. Orojloo, H., & Azgomi, M. A. (2017). A method for evaluating the consequence propagation of security attacks in cyber–physical systems. Future Generation Computer Systems, 67, 57–71.

    Google Scholar 

  23. Ajagbe, S. A., Ayegboyin, M. O., Idowu, I. R., Adeleke, T. A., & Thanh, D. N. H. (2022) Investigating Energy Efficiency of Mobile Ad-hoc Network (MANET) Routing Protocols, An International Journal of Computing and informatics, Vol 46, no. 2, pp. 269–275, https://doi.org/10.31449/inf.v46i2.3576

  24. Ozansoy, C. R., Zayegh, A., & Kalam, A. (2008, December). Time synchronisation in a IEC 61850 based substation automation system. In 2008 Australasian Universities Power Engineering Conference (pp. 1–7). IEEE.

    Google Scholar 

  25. Modbus, I. D. A. (2004). Modbus application protocol specification v1. 1a. North Grafton, Massachusetts (www. modbus. org/specs. php).

    Google Scholar 

  26. Gładysz, B. (2015). An assessment of RFID applications in manufacturing companies. Management and Production Engineering Review, 6(4), 33–42.

    Google Scholar 

  27. Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., & Eschert, T. (2017). Industrial internet of things and cyber manufacturing systems. In Industrial internet of things (pp. 3–19). Springer, Cham.

    Google Scholar 

  28. Younan, M., Houssein, E. H., Elhoseny, M., & Ali, A. A. (2020). Challenges and recommended technologies for the industrial internet of things: A comprehensive review. Measurement, 151, 107198.

    Google Scholar 

  29. Kumar, J. S., & Patel, D. R. (2014). A survey on internet of things: Security and privacy issues. International Journal of Computer Applications, 90(11).

    Google Scholar 

  30. Al-Sarawi, S., Anbar, M., Alieyan, K., & Alzubaidi, M. (2017, May). Internet of Things (IoT) communication protocols. In 2017 8th International conference on information technology (ICIT) (pp. 685–690). IEEE.

    Google Scholar 

  31. Suo, H., Wan, J., Zou, C., & Liu, J. (2012, March). Security in the internet of things: a review. In 2012 international conference on computer science and electronics engineering (Vol. 3, pp. 648–651). IEEE.

    Google Scholar 

  32. Yaacoub, J. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020); Cyber-physical systems security: Limitations, issues and future trends. Micro process Microsyst. 2020 Sep;77:103201. doi: 10.1016/j.micpro.2020.103201. Epub 2020 Jul 8. PMID: 32834204; PMCID: PMC7340599.

    Google Scholar 

  33. Ashibani, Y., & Mahmoud, Q. H. (2017). Cyber physical systems security: Analysis, challenges and solutions. Computers & Security, 68, 81–97.

    Google Scholar 

  34. Ma, H. D. (2011). Internet of things: Objectives and scientific challenges. Journal of Computer science and Technology, 26(6), 919–924.

    Google Scholar 

  35. Schätz, B., Törngren, M., Passerone, R., Pfeifer, H., Bensalem, S., McDermid, J., ... & Cengarle, M. V. (2015). CyPhERS-cyber-physical European roadmap and strategy. Fortiss GmbH, Munich, Germany, Tech. Rep, 611430.

    Google Scholar 

  36. Yeboah-Ofori, A., Abdulai, J., & Katsriku, F. (2019). Cybercrime and Risks for Cyber Physical Systems. International Journal of Cyber-Security and Digital Forensics (IJCSDF), 8(1), 43–57.

    Article  Google Scholar 

  37. Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the Internet of Things (IoT). IEEE Internet Initiative, 1(1), 1–86.

    Google Scholar 

  38. Broo, D. G., Boman, U., & Törngren, M. (2020). Cyber-physical systems research and education in 2030: Scenarios and strategies. Journal of Industrial Information Integration, 21, 100192.

    Google Scholar 

  39. Zheng, X., & Julien, C. (2015, May). Verification and validation in cyber physical systems: Research challenges and a way forward. In 2015 IEEE/ACM 1st International Workshop on Software Engineering for Smart Cyber-Physical Systems (pp. 15–18). IEEE.

    Google Scholar 

  40. Greer, C., Burns, M., Wollman, D., & Griffor, E. (2019). Cyber-physical systems and internet of things.

    Google Scholar 

  41. Ashton, K. (2009). That ‘internet of things’ thing. RFID journal, 22(7), 97–114.

    Google Scholar 

  42. Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, applications, and challenges in cyber-physical systems. KSII Transactions on Internet & Information Systems, 8(12).

    Google Scholar 

  43. La, H. J., & Kim, S. D. (2010, August). A service-based approach to designing cyber physical systems. In 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (pp. 895–900). IEEE.

    Google Scholar 

  44. Lu, T., Lin, J., Zhao, L., Li, Y., & Peng, Y. (2015). A security architecture in cyber-physical systems: security theories, analysis, simulation and application fields. International Journal of Security and Its Applications, 9(7), 1–16.

    Google Scholar 

  45. Wu, M., Lu, T. J., Ling, F. Y., Sun, J., & Du, H. Y. (2010, August). Research on the architecture of Internet of Things. In 2010 3rd international conference on advanced computer theory and engineering (ICACTE) (Vol. 5, pp. V5–484). IEEE.

    Google Scholar 

  46. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012, December). Future internet: the internet of things architecture, possible applications and key challenges. In 2012 10th international conference on frontiers of information technology (pp. 257–260). IEEE.

    Google Scholar 

  47. Zhang, B., Ma, X. X., & Qin, Z. G. (2011). Security architecture on the trusting internet of things. Journal of Electronic Science and Technology, 9(4), 364–367.

    Google Scholar 

  48. Bajeh, A. O., Mojeed, H. A., Ameen, A. O., Abikoye, O. C., Salihu, S. A., Abdulraheem, M., ... & Awotunde, J. B. (2021). Internet of robotic things: its domain, methodologies, and applications. In Emergence of Cyber Physical System and IoT in Smart Automation and Robotics (pp. 135–146). Springer, Cham.

    Google Scholar 

  49. Chang, W., Burton, S., Lin, C. W., Zhu, Q., Gauerhof, L., & McDermid, J. (2020). Intelligent and connected cyber-physical systems: A perspective from connected autonomous vehicles. In Intelligent Internet of Things (pp. 357–392). Springer, Cham.

    Google Scholar 

  50. Cao, L., Jiang, X., Zhao, Y., Wang, S., You, D., & Xu, X. (2020). A survey of network attacks on cyber-physical systems. IEEE Access, 8, 44219–44227.

    Google Scholar 

  51. Awotunde, J. B., Jimoh, R. G., Folorunso, S. O., Adeniyi, E. A., Abiodun, K. M., & Banjo, O. O. (2021). Privacy and security concerns in IoT-based healthcare systems. In The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care (pp. 105–134). Springer, Cham.

    Google Scholar 

  52. Ali, S., Al Balushi, T., Nadir, Z., & Hussain, O. K. (2018). Cyber Security for Cyber Physical Systems (Vol. 768, pp. 11–33). Springer.

    Google Scholar 

  53. Geilen, M., Tripakis, S., & Wiggers, M. (2011, April). The earlier the better: A theory of timed actor interfaces. In Proceedings of the 14th international conference on Hybrid systems: computation and control (pp. 23–32).

    Google Scholar 

  54. Vicaire, P. A., Hoque, E., Xie, Z., & Stankovic, J. A. (2011). Bundle: A group-based programming abstraction for cyber-physical systems. IEEE Transactions on Industrial Informatics, 8(2), 379–392.

    Google Scholar 

  55. Canedo, A., Schwarzenbach, E., & Faruque, M. A. A. (2013, April). Context-sensitive synthesis of executable functional models of cyber-physical systems. In 2013 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (pp. 99–108). IEEE.

    Google Scholar 

  56. Zhang, Z., Eyisi, E., Koutsoukos, X., Porter, J., Karsai, G., & Sztipanovits, J. (2014). A co-simulation framework for design of time-triggered automotive cyber physical systems. Simulation modelling practice and theory, 43, 16–33.

    Google Scholar 

  57. Hu, F., Lu, Y., Vasilakos, A. V., Hao, Q., Ma, R., Patil, Y., ... & Xiong, N. N. (2016). Robust cyber–physical systems: Concept, models, and implementation. Future generation computer systems, 56, 449–475.

    Google Scholar 

  58. Tan, Y., Vuran, M. C., Goddard, S., Yu, Y., Song, M., & Ren, S. (2010, April). A concept lattice-based event model for cyber-physical systems. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-physical Systems (pp. 50–60).

    Google Scholar 

  59. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., ... & Yovine, S. (1995). The algorithmic analysis of hybrid systems. Theoretical computer science, 138(1), 3–34.

    Google Scholar 

  60. Antsaklis, P. J., Stiver, J. A., & Lemmon, M. (1992). Hybrid system modeling and autonomous control systems. In Hybrid systems (pp. 366-392). Springer, Berlin, Heidelberg.

    Google Scholar 

  61. Yalei, Y., & Xingshe, Z. (2013, June). Cyber-physical systems modeling based on extended hybrid automata. In 2013 International Conference on Computational and Information Sciences (pp. 1871–1874). IEEE.

    Google Scholar 

  62. Benveniste, A., Bourke, T., Caillaud, B., & Pouzet, M. (2013). Hybrid systems modeling challenges caused by cyber-physical systems. Cyber-Physical Systems (CPS) Foundations and Challenges. Available on-line: http://people. rennes. inria. fr/Albert. Benveniste/pub/NIST2012. pdf.

    Google Scholar 

  63. Kumar, P., Goswami, D., Chakraborty, S., Annaswamy, A., Lampka, K., & Thiele, L. (2012, June). A hybrid approach to cyber-physical systems verification. In DAC Design Automation Conference 2012 (pp. 688–696). IEEE.

    Google Scholar 

  64. Tidwell, T., Gao, X., Huang, H. M., Lu, C., Dyke, S., & Gill, C. (2009, March). Towards configurable real-time hybrid structural testing: a cyber-physical system approach. In 2009 IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (pp. 37–44). IEEE.

    Google Scholar 

  65. Jianhui, M. (2011). Event driven monitoring of cyber-physical systems based on hybrid automata. National University of Defense Technology Changsha.

    Google Scholar 

  66. Wan, K., & Alagar, V. (2011, November). Dependable context-sensitive services in cyber physical systems. In 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications (pp. 687–694). IEEE.

    Google Scholar 

  67. Denker, G., Dutt, N., Mehrotra, S., Stehr, M. O., Talcott, C., & Venkatasubramanian, N. (2012). Resilient dependable cyber-physical systems: a middleware perspective. Journal of Internet Services and Applications, 3(1), 41–49.

    Google Scholar 

  68. Höfig, K., Armbruster, M., & Schmidt, R. (2014). A vehicle control platform as safety element out of context.

    Google Scholar 

  69. Shcherbakov, M. V., Glotov, A. V., & Cheremisinov, S. V. (2020). Proactive and predictive maintenance of cyber-physical systems. In Cyber-Physical Systems: Advances in Design & Modelling (pp. 263–278). Springer, Cham.

    Google Scholar 

  70. Napoleone, A., Macchi, M., & Pozzetti, A. (2020). A review on the characteristics of cyber-physical systems for the future smart factories. Journal of manufacturing systems, 54, 305–335.

    Google Scholar 

  71. Haque, S. A., Aziz, S. M., & Rahman, M. (2014). Review of cyber-physical system in healthcare. international journal of distributed sensor networks, 10(4), 217415.

    Google Scholar 

  72. Wei, M. (2016). Modeling, Evaluation and Enhancement of Threats-Induced Reliability in Cyber-Physical Systems.

    Google Scholar 

  73. Chen, K. C., Lin, S. C., Hsiao, J. H., Liu, C. H., Molisch, A. F., & Fettweis, G. P. (2020). Wireless networked multirobot systems in smart factories. Proceedings of the IEEE.

    Google Scholar 

  74. Hoffmann, M. (2019). Smart Agents for the Industry 4.0: Enabling Machine Learning in Industrial Production. Springer Nature.

    Google Scholar 

  75. Letichevsky, A. A., Letychevskyi, O. O., Skobelev, V. G., & Volkov, V. A. (2017). Cyber-physical systems. Cybernetics and Systems Analysis, 53(6), 821–834.

    Google Scholar 

  76. Misra, S., & Eronu, E. (2012). Implementing reconfigurable wireless sensor networks: The embedded operating system approach. Embedded Systems-High Performance Systems, Applications and Projects, Intechopen, 221–232.

    Google Scholar 

  77. Yaacoub, J. P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77, 103201.

    Google Scholar 

  78. Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: Threats and potential solutions. Computer networks, 169, 107094.

    Google Scholar 

  79. Maglaras, L. A., Kim, K. H., Janicke, H., Ferrag, M. A., Rallis, S., Fragkou, P., ... & Cruz, T. J. (2018). Cyber security of critical infrastructures. Ict Express, 4(1), 42–45.

    Google Scholar 

  80. Jimenez, J. I., Jahankhani, H., & Kendzierskyj, S. (2020). Health care in the cyberspace: Medical cyber-physical system and digital twin challenges. In Digital Twin Technologies and Smart Cities (pp. 79–92). Springer, Cham.

    Google Scholar 

  81. Gunes, V., & Givargis, T. (2015, August). XGRID: A scalable many-core embedded processor. In 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems (pp. 1143–1146). IEEE.

    Google Scholar 

  82. Park, M. J., Kim, D. K., Kim, W. T., & Park, S. M. (2010, November). Dynamic software updates in cyber-physical systems. In 2010 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 425–426). IEEE.

    Google Scholar 

  83. Jalali, S. (2009). Trends and implications in embedded systems development. TCS white paper.

    Google Scholar 

  84. Konstantinou, C., Maniatakos, M., Saqib, F., Hu, S., Plusquellic, J., & Jin, Y. (2015, May). Cyber-physical systems: A security perspective. In 2015 20th IEEE European Test Symposium (ETS) (pp. 1–8). IEEE.

    Google Scholar 

  85. Wang, E. K., Ye, Y., Xu, X., Yiu, S. M., Hui, L. C. K., & Chow, K. P. (2010, December). Security issues and challenges for cyber physical system. In 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing (pp. 733–738). IEEE.

    Google Scholar 

  86. Kim, N. Y., Rathore, S., Ryu, J. H., Park, J. H., & Park, J. H. (2018). A survey on cyber physical system security for IoT: issues, challenges, threats, solutions. Journal of Information Processing Systems, 14(6), 1361–1384.

    Google Scholar 

  87. Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security—A survey. IEEE Internet of Things Journal, 4(6), 1802–1831.

    Google Scholar 

  88. Kumar, C., Marston, S., & Sen, R. (2020). Cyber-physical Systems (CPS) Security: State of the Art and Research Opportunities for Information Systems Academics. Communications of the Association for Information Systems, 47(1), 36.

    Google Scholar 

  89. Hassan, M. U., Rehmani, M. H., & Chen, J. (2019). Differential privacy techniques for cyber physical systems: a survey. IEEE Communications Surveys & Tutorials, 22(1), 746–789.

    Google Scholar 

  90. Griffioen, P., Weerakkody, S., Sinopoli, B., Ozel, O., & Mo, Y. (2019, June). A Tutorial on Detecting Security Attacks on Cyber-Physical Systems. In 2019 18th European Control Conference (ECC) (pp. 979–984). IEEE.

    Google Scholar 

  91. Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., & Sezer, S. (2017). STPA-SafeSec: Safety and security analysis for cyber-physical systems. Journal of information security and applications, 34, 183–196.

    Google Scholar 

  92. Wang, W., & Lu, Z. (2013). Cyber security in the smart grid: Survey and challenges. Computer networks, 57(5), 1344–1371.

    Google Scholar 

  93. Ali, N. S. (2016). A four-phase methodology for protecting web applications using an effective real-time technique. International Journal of Internet Technology and Secured Transactions, 6(4), 303–323.

    Google Scholar 

  94. Al-Mhiqani, M. N., Ahmad, R., Abdulkareem, K. H., & Ali, N. S. (2017). Investigation study of Cyber-Physical Systems: Characteristics, application domains, and security challenges. ARPN Journal of Engineering and Applied Sciences, 12(22), 6557–6567.

    Google Scholar 

  95. Ten, C. W., Manimaran, G., & Liu, C. C. (2010). Cybersecurity for critical infrastructures: Attack and defense modeling. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(4), 853–865.

    Google Scholar 

  96. Ali, N. S., & Shibghatullah, A. S. (2016). Protection web applications using real-time technique to detect structured query language injection attacks. International Journal of Computer Applications, 149(6), 26–32.

    Google Scholar 

  97. Sridhar, S., Hahn, A., & Govindarasu, M. (2011). Cyber–physical system security for the electric power grid. Proceedings of the IEEE, 100(1), 210–224.

    Google Scholar 

  98. Coffey, K., Smith, R., Maglaras, L., & Janicke, H. (2018). Vulnerability analysis of network scanning on SCADA systems. Security and Communication Networks, 2018.

    Google Scholar 

  99. Bou-Harb, E. (2016, November). A brief survey of security approaches for cyber-physical systems. In 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS) (pp. 1–5). IEEE.

    Google Scholar 

  100. Cleveland, F. M. (2008, July). Cyber security issues for advanced metering infrasttructure (AMI). In 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1–5). IEEE.

    Google Scholar 

  101. Cronin, John. “Automated IP tracking system and method.” U.S. Patent Application 11/249,575, filed February 9, 2006.

    Google Scholar 

  102. Safa, H., Chouman, M., Artail, H., & Karam, M. (2008). A collaborative defense mechanism against SYN flooding attacks in IP networks. Journal of Network and Computer Applications, 31(4), 509–534.

    Google Scholar 

  103. Moteff, J. (2005, February). Risk management and critical infrastructure protection: Assessing, integrating, and managing threats, vulnerabilities and consequences. Library of Congress Washington DC Congressional Research Service.

    Google Scholar 

  104. Zhu, B., Joseph, A., & Sastry, S. (2011, October). A taxonomy of cyber attacks on SCADA systems. In 2011 International conference on internet of things and 4th international conference on cyber, physical and social computing (pp. 380–388). IEEE.

    Google Scholar 

  105. Nash, T. (2005). Backdoors and holes in network perimeters. Online]: http://ics-cert. us-cert. gov/controlsystems.

    Google Scholar 

  106. Amin, S., Litrico, X., Sastry, S., & Bayen, A. M. (2012). Cyber security of water SCADA systems—Part I: Analysis and experimentation of stealthy deception attacks. IEEE Transactions on Control Systems Technology, 21(5), 1963–1970.

    Google Scholar 

  107. Cerdeira, D., Santos, N., Fonseca, P., & Pinto, S. (2020, May). Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In 2020 IEEE Symposium on Security and Privacy (SP) (pp. 1416–1432). IEEE.

    Google Scholar 

  108. Amin, S., Schwartz, G. A., & Hussain, A. (2013). In quest of benchmarking security risks to cyber-physical systems. IEEE Network, 27(1), 19–24.

    Google Scholar 

  109. Abera, T., Asokan, N., Davi, L., Ekberg, J. E., Nyman, T., Paverd, A., ... & Tsudik, G. (2016, October). C-FLAT: control-flow attestation for embedded systems software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 743–754).

    Google Scholar 

  110. Francillon, A., & Castelluccia, C. (2008, October). Code injection attacks on harvard-architecture devices. In Proceedings of the 15th ACM conference on Computer and communications security (pp. 15–26).

    Google Scholar 

  111. Roemer, R., Buchanan, E., Shacham, H., & Savage, S. (2012). Return-oriented programming: Systems, languages, and applications. ACM Transactions on Information and System Security (TISSEC), 15(1), 1–34.

    Google Scholar 

  112. Alemzadeh, H., Chen, D., Li, X., Kesavadas, T., Kalbarczyk, Z. T., & Iyer, R. K. (2016, June). Targeted attacks on teleoperated surgical robots: Dynamic model-based detection and mitigation. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (pp. 395–406). IEEE.

    Google Scholar 

  113. Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., & Liang, Z. (2016, May). Data-oriented programming: On the expressiveness of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP) (pp. 969–986). IEEE.

    Google Scholar 

  114. Lu, T., Xu, B., Guo, X., Zhao, L., & Xie, F. (2013, March). A new multilevel framework for cyber-physical system security. In First international Workshop on the Swarm at the Edge of the Cloud.

    Google Scholar 

  115. Zalewski, J., Drager, S., McKeever, W., & Kornecki, A. J. (2013, January). Threat modeling for security assessment in cyberphysical systems. In Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research Workshop (pp. 1–4).

    Google Scholar 

  116. Khattak, H. A., Shah, M. A., Khan, S., Ali, I., & Imran, M. (2019). Perception layer security in Internet of Things. Future Generation Computer Systems, 100, 144–164.

    Google Scholar 

  117. Corallo, A., Lazoi, M., & Lezzi, M. (2020). Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. Computers in industry, 114, 103165.

    Google Scholar 

  118. Zhong, M., Zhou, Y., & Chen, G. (2021). Sequential Model Based Intrusion Detection System for IoT Servers Using Deep Learning Methods. Sensors, 21(4), 1113.

    Google Scholar 

  119. Mitchell, R., & Chen, I. R. (2014). A survey of intrusion detection techniques for cyber-physical systems. ACM Computing Surveys (CSUR), 46(4), 1-29.

    Google Scholar 

  120. Chen, D. D., Woo, M., Brumley, D., & Egele, M. (2016, February). Towards Automated Dynamic Analysis for Linux-based Embedded Firmware. In NDSS (Vol. 1, pp. 1–1).

    Google Scholar 

  121. Upadhyay, D., & Sampalli, S. (2020). SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations. Computers & Security, 89, 101666.

    Google Scholar 

  122. Abdelrahman, A. M., Rodrigues, J. J., Mahmoud, M. M., Saleem, K., Das, A. K., Korotaev, V., & Kozlov, S. A. (2021). Software-defined networking security for private data center networks and clouds: Vulnerabilities, attacks, countermeasures, and solutions. International Journal of Communication Systems, 34(4), e4706.

    Google Scholar 

  123. Abikoye, O. C., Bajeh, A. O., Awotunde, J. B., Ameen, A. O., Mojeed, H. A., Abdulraheem, M., ... & Salihu, S. A. (2021). Application of internet of thing and cyber physical system in Industry 4.0 smart manufacturing. In Emergence of Cyber Physical System and IoT in Smart Automation and Robotics (pp. 203–217). Springer, Cham.

    Google Scholar 

  124. Ajagbe, S. A., Oyediran, M. O., Nayyar, A., Awokola, J. A. and Al-Amri, J. F., (2022) “P-acohoneybee: a novel load balancer for cloud computing using mathematical approach,” Computers, Materials & Continua, vol. 73, no.1, pp. 1943–1959, https://doi.org/10.32604/cmc.2022.028331

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday Adeola Ajagbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B. et al. (2023). Cyber-Physical Systems Security: Analysis, Opportunities, Challenges, and Future Prospects. In: Maleh, Y., Alazab, M., Romdhani, I. (eds) Blockchain for Cybersecurity in Cyber-Physical Systems. Advances in Information Security, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-031-25506-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25506-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25505-2

  • Online ISBN: 978-3-031-25506-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics