Skip to main content

Towards Interactive Geovisualization Authoring Toolkit for Industry Use Cases

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

Interactive visualizations of geospatial data are commonplace in various applications and tools. The visual complexity of these visualizations ranges from simple point markers placed on the cartographic maps through visualizing connections, heatmaps, or choropleths to their combination. Designing proper visualizations of geospatial data is often tricky, and the existing approaches either provide only limited support based on pre-defined templates or require extensive programming skills. In our previous work, we introduced the Geovisto toolkit – a novel approach that blends between template editing and programmatic approaches providing tools for authoring reusable multilayered map widgets even for non-programmers. In this paper, we extend our previous work focusing on Geovisto’s application in the industry. Based on the critical assessment of two existing usage scenarios, we summarize the necessary design changes and their impact on the toolkit’s architecture and implementation. We further present a case study where Geovisto was used in the production-ready application for IoT sensor monitoring developed by Logimic, a Czech-US startup company. We conclude by discussing the advantages and limitations of our approach and outlining the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://qgis.org/en/site/.

  2. 2.

    https://www.arcgis.com/index.html.

  3. 3.

    https://www.mapbox.com/mapbox-gljs.

  4. 4.

    https://openlayers.org.

  5. 5.

    https://leafletjs.com.

  6. 6.

    https://reactjs.org/.

  7. 7.

    https://rapidapi.com/.

  8. 8.

    https://www.flowmon.com/en.

  9. 9.

    https://www.typescriptlang.org.

  10. 10.

    https://github.com/johan/world.geo.json.

  11. 11.

    Metadata required by the Node.js Package Manager when resolving the tree of package dependencies, running, building, and publishing the package.

  12. 12.

    https://www.npmjs.com/package/geovisto.

  13. 13.

    https://nodejs.dev/learn/npm-dependencies-and-devdependencies.

  14. 14.

    https://www.npmjs.com/search?q=geovisto.

  15. 15.

    https://github.com/geovisto.

  16. 16.

    https://github.com/leaflet-extras/leaflet-providers.

  17. 17.

    https://github.com/Leaflet/Leaflet.markercluster.

  18. 18.

    https://bl.ocks.org/sjengle/2e58e83685f6d854aa40c7bc546aeb24.

  19. 19.

    https://github.com/d3/d3-force.

  20. 20.

    Logimics’ products include smart city dashboards for monitoring billions of sensors, street lighting control systems, indoor monitoring of temperature and humidity with small battery-operated wireless sensors, wireless control of industrial heaters, and many others (https://www.logimic.com/).

  21. 21.

    https://github.com/leaflet-extras/leaflet-providers.

  22. 22.

    https://www.npmjs.com/search?q=geovisto.

  23. 23.

    https://github.com/geovisto.

References

  1. Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1121–1128 (2009)

    Article  Google Scholar 

  2. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.2011.185

  3. Degbelo, A., Kauppinen, T.: Increasing transparency through web maps. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, pp. 899–904.International World Wide Web Conferences Steering Committee, Geneva (2018). https://doi.org/10.1145/3184558.3191515

  4. Elasticsearch, B.: Maps for Geospatial Analysis (2020). https://www.elastic.co/maps, Accessed 10 Feb 2020

  5. Gao, T., Hullman, J.R., Adar, E., Hecht, B., Diakopoulos, N.: NewsViews: an automated pipeline for creating custom geovisualizations for news. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 3005–3014. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2556288.2557228

  6. Grafana Labs: Grafana: The Open Observability Platform (2020). https://grafana.com/, Accessed 10 June 2020

  7. Grammel, L., Bennett, C., Tory, M., Storey, M.A.: A survey of visualization construction user interfaces. In: Hlawitschka, M., Weinkauf, T. (eds.) EuroVis - Short Papers. The Eurographics Association (2013). https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023

  8. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009). https://doi.org/10.1111/j.1467-8659.2009.01450.x

    Article  Google Scholar 

  9. Huang, Q., Cervone, G., Jing, D., Chang, C.: DisasterMapper: a CyberGIS framework for disaster management using social media data. In: Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, BigSpatial 2015, pp. 1–6. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2835185.2835189

  10. Hynek, J., Kachlík, J., Rusňák, V.: Geovisto: a toolkit for generic geospatial data visualization. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010260401010111

  11. Li, X., Anselin, L., Koschinsky, J.: GeoDa web: enhancing web-based mapping with spatial analytics. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2015. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2820783.2820792

  12. Liu, Z., Thompson, J., et al.: Data illustrator: augmenting vector design tools with lazy data binding for expressive visualization authoring. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 1–13. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3173574.3173697

  13. Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for information visualization: a survey. J. Visual Lang. Comput. 44, 120–132 (2018). https://doi.org/10.1016/j.jvlc.2017.10.001

    Article  Google Scholar 

  14. Ren, D., Lee, B., Brehmer, M.: Charticulator: interactive construction of bespoke chart layouts. IEEE Trans. Vis. Comput. Graph. 25(1), 789–799 (2019)

    Google Scholar 

  15. Satyanarayan, A., Heer, J.: Lyra: an interactive visualization design environment. In: Proceedings of the 16th Eurographics Conference on Visualization, EuroVis 2014, pp. 351–360. Eurographics Association, Goslar, DEU (2014)

    Google Scholar 

  16. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph. 23(1), 341–350 (2017)

    Article  Google Scholar 

  17. Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming dataflow architecture for declarative interactive visualization. IEEE Trans. Vis. Comput. Graph. 22(1), 659–668 (2015)

    Article  Google Scholar 

  18. Tableau Software, LLC.: Mapping Concepts in Tableau (2020). https://help.tableau.com/current/pro/desktop/en-us/maps_build.htm, Accessed 10 Feb 2020

  19. Xavier, G., Dodge, S.: An exploratory visualization tool for mapping the relationships between animal movement and the environment. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Interacting with Maps, MapInteract 2014, pp. 36–42. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2677068.2677071

Download references

Acknowledgements

Jiří Hynek was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science – LQ1602”. Vít Rusňák was supported by ERDF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822) project. We also thank Progress Flowmon and Logimic, which provided usage scenarios and cooperated during the evaluation of the Geovisto toolkit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Hynek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hynek, J., Rusňák, V. (2023). Towards Interactive Geovisualization Authoring Toolkit for Industry Use Cases. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics